billm-mistral-7b-conll03-ner-maxlen-256

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2232
  • Precision: 0.9277
  • Recall: 0.9363
  • F1: 0.9320
  • Accuracy: 0.9863

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0329 1.0 7021 0.1599 0.9256 0.9357 0.9306 0.9856
0.0145 2.0 14042 0.1789 0.9312 0.9340 0.9326 0.9860
0.0106 3.0 21063 0.1931 0.9288 0.9359 0.9324 0.9864
0.0065 4.0 28084 0.2161 0.9277 0.9361 0.9319 0.9863
0.0043 5.0 35105 0.2168 0.9276 0.9363 0.9319 0.9864
0.002 6.0 42126 0.2250 0.9274 0.9359 0.9316 0.9863
0.0027 7.0 49147 0.2246 0.9269 0.9356 0.9312 0.9862
0.0023 8.0 56168 0.2235 0.9277 0.9364 0.9321 0.9863
0.0024 9.0 63189 0.2232 0.9276 0.9364 0.9320 0.9863
0.0016 10.0 70210 0.2232 0.9277 0.9363 0.9320 0.9863

Framework versions

  • PEFT 0.10.0
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for WhereIsAI/billm-mistral-7b-conll03-ner-maxlen-256

Adapter
(1244)
this model

Dataset used to train WhereIsAI/billm-mistral-7b-conll03-ner-maxlen-256