See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Llama-3.2-1B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: datasets/airoboros_3.2_without_contextual_slimorca_orca_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/allenai_wild_chat_gpt4_english_toxic_random_half_4k_sharegpt.json
ds_type: json
type: sharegpt
strict: false
conversation: chatml
- path: datasets/buzz_unstacked_chosen_math_removed_filtered.json
ds_type: json
type: alpaca
conversation: chatml
- path: datasets/capybara_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/cot_alpaca_gpt4_extracted_openhermes_2.5_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/everythinglm-data-v3_sharegpt.json
ds_type: json
type: sharegpt
strict: false
conversation: chatml
- path: datasets/gpt4_data_lmys_1m_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/gpteacher-instruct-special-alpaca.json
ds_type: json
type: gpteacher
conversation: chatml
- path: datasets/merged_all.json
ds_type: json
type: alpaca
conversation: chatml
- path: datasets/no_robots_sharegpt.json
ds_type: json
type: sharegpt
strict: false
conversation: chatml
- path: datasets/oasst_top1_from_fusechatmixture_sharegpt.json
ds_type: json
type: sharegpt
strict: false
conversation: chatml
- path: datasets/pippa_bagel_repo_3k_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/rpguild_quarter_alignment_lab_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/sharegpt_gpt4_english.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/slimorca_dedup_filtered_95k_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/soda_diaolog_longest_tenth_buzz_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/synthia-v1.3_sharegpt_12500.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/system_conversations_dolphin_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/NuminaMath-CoT-olympiads-40k_alpaca.json
ds_type: json
type: alpaca
conversation: chatml
- path: datasets/math-gpt-4o-40k_alpaca.json
ds_type: json
type: alpaca
conversation: chatml
- path: datasets/sonnet3.5_science_conversations_sharegpt.json
ds_type: json
type: sharegpt
conversation: chatml
- path: datasets/reasoning-0.01_sharegpt.jsonl
ds_type: json
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.002
output_dir: ./Einstein-v8-Llama3.2-1B-model
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
wandb_project: Einstein
wandb_entity:
wandb_watch:
wandb_name: Einstein-v8-Llama3.2-1B-2-epoch
wandb_log_model:
hub_model_id: Weyaxi/Einstein-v8-Llama3.2-1B
save_safetensors: true
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_bnb_8bit # look
lr_scheduler: cosine
learning_rate: 0.000005 # look
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "<|im_end|>"
unk_token: "<unk>"
pad_token: <|end_of_text|> # changed
tokens:
- "<|im_start|>"
Einstein-v8-Llama3.2-1B
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9292
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4261 | 0.0009 | 1 | 1.4028 |
1.0487 | 0.2501 | 268 | 0.9917 |
1.0484 | 0.5001 | 536 | 0.9652 |
1.0039 | 0.7502 | 804 | 0.9499 |
1.0528 | 1.0002 | 1072 | 0.9399 |
0.9559 | 1.2481 | 1340 | 0.9345 |
0.9078 | 1.4981 | 1608 | 0.9309 |
0.9702 | 1.7481 | 1876 | 0.9295 |
0.929 | 1.9981 | 2144 | 0.9292 |
Framework versions
- Transformers 4.45.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 4.63 |
IFEval (0-Shot) | 18.62 |
BBH (3-Shot) | 3.01 |
MATH Lvl 5 (4-Shot) | 0.00 |
GPQA (0-shot) | 1.12 |
MuSR (0-shot) | 3.22 |
MMLU-PRO (5-shot) | 1.79 |
- Downloads last month
- 282
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.