Weni/WeniGPT-Agents-Mistral-4.0.0-KTO
This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.1-SFT-merged] on the dataset Weni/wenigpt-agent-1.4.0 with the KTO trainer. It is part of the WeniGPT project for Weni. Description: Experiment with KTO and a new tokenizer configuration for chat template of mistral
It achieves the following results on the evaluation set: {'eval_loss': nan, 'eval_runtime': 37.5555, 'eval_samples_per_second': 5.805, 'eval_steps_per_second': 1.464, 'eval_rewards/chosen': -5.005271911621094, 'eval_rewards/rejected': -5.3910417556762695, 'eval_rewards/margins': 0.3857699930667877, 'eval_kl': 0.0, 'eval_logps/chosen': -358.4790954589844, 'eval_logps/rejected': -282.4818420410156, 'epoch': 0.88}
Intended uses & limitations
This model has not been trained to avoid specific intructions.
Training procedure
Finetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.1-SFT-merged with the following prompt:
---------------------
System_prompt:
Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
{instructions_formatted}
{context_statement}
Lista de requisitos:
- Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
- Nunca traga informações do seu próprio conhecimento.
- Repito é crucial que você responda usando apenas informações do contexto.
- Nunca mencione o contexto fornecido.
- Nunca mencione a pergunta fornecida.
- Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
- Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.
---------------------
Question:
{question}
---------------------
Response:
{answer}
---------------------
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- per_device_train_batch_size: 1
- per_device_eval_batch_size: 1
- gradient_accumulation_steps: 8
- num_gpus: 4
- total_train_batch_size: 32
- optimizer: AdamW
- lr_scheduler_type: cosine
- num_steps: 23
- quantization_type: bitsandbytes
- LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 8\n - lora_alpha: 16\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\n - task_type: CAUSAL_LM",)
Training results
Framework versions
- transformers==4.38.2
- datasets==2.18.0
- peft==0.10.0
- safetensors==0.4.2
- evaluate==0.4.1
- bitsandbytes==0.43
- huggingface_hub==0.22.2
- seqeval==1.2.2
- optimum==1.18.1
- auto-gptq==0.7.1
- gpustat==1.1.1
- deepspeed==0.14.0
- wandb==0.16.6
- trl==0.8.1
- accelerate==0.29.2
- coloredlogs==15.0.1
- traitlets==5.14.2
- autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.4/autoawq-0.2.4+cu118-cp310-cp310-linux_x86_64.whl
Hardware
- Cloud provided: runpod.io
- Downloads last month
- 1
Model tree for Weni/WeniGPT-Agents-Mistral-4.0.0-KTO
Base model
Weni/WeniGPT-Agents-Mistral-1.0.1-SFT-merged