Qwen2-1.5B-Medical-Instruct

This model is a pretrain+fine-tuned+rlhf version of Qwen2-1.5B-Instruct on the medical dataset

Model description

Detailed model description can be seen on the base model Qwen/Qwen2-1.5B-Instruct page. This model has been pre-trained on medical industry, then fine-tuned all lora_target, and finally trained with reinforcement learning.

Training and evaluation data

This model is a pretrain+fine-tuned+rlhf version of Qwen2-1.5B-Instruct on the medical dataset

Training procedure

Pre-train

pre-trained on medical industry

SFT

fine-tuned on sft data

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.7788 0.1239 500 2.1232
1.7728 0.2477 1000 2.0532
1.761 0.3716 1500 2.0188
1.7292 0.4955 2000 1.9984
1.7553 0.6194 2500 1.9872
1.7264 0.7432 3000 1.9739
1.7028 0.8671 3500 1.9638
1.6923 0.9910 4000 1.9570
1.6972 1.1149 4500 1.9498
1.705 1.2387 5000 1.9449
1.6902 1.3626 5500 1.9409
1.6694 1.4865 6000 1.9361
1.7191 1.6104 6500 1.9308
1.6976 1.7342 7000 1.9283
1.6798 1.8581 7500 1.9247
1.6737 1.9820 8000 1.9208
1.6696 2.1058 8500 1.9195
1.6817 2.2297 9000 1.9164
1.6715 2.3536 9500 1.9141
1.6798 2.4775 10000 1.9119
1.6829 2.6013 10500 1.9089
1.6551 2.7252 11000 1.9075
1.6781 2.8491 11500 1.9052
1.6833 2.9730 12000 1.9039
1.6391 3.0968 12500 1.9032
1.6535 3.2207 13000 1.9022
1.6744 3.3446 13500 1.9010
1.6399 3.4685 14000 1.9009
1.6333 3.5923 14500 1.9005
1.6643 3.7162 15000 1.9000
1.6673 3.8401 15500 1.9002
1.6719 3.9640 16000 1.8999

DPO

human feedback reinforcement learning on medical reward data

{
    "epoch": 3.764705882352941,
    "eval_logits/chosen": -1.19295334815979,
    "eval_logits/rejected": -0.7887511253356934,
    "eval_logps/chosen": -150.47561645507812,
    "eval_logps/rejected": -75.58721160888672,
    "eval_loss": 0.6550262570381165,
    "eval_rewards/accuracies": 1.0,
    "eval_rewards/chosen": 0.03167621046304703,
    "eval_rewards/margins": 0.13228271901607513,
    "eval_rewards/rejected": -0.10060650110244751,
    "eval_runtime": 1.805,
    "eval_samples_per_second": 55.403,
    "eval_steps_per_second": 3.878
}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
1.54B params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Wenbing/Qwen2-1.5B-Medical

Adapter
(799)
this model