flan-t5-small-samsum

This model is a fine-tuned version of google/flan-t5-small on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6729
  • Rouge1: 42.6222
  • Rouge2: 18.682
  • Rougel: 35.3954
  • Rougelsum: 38.9104
  • Gen Len: 16.9170

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.8863 0.22 100 1.7049 42.1145 18.0254 34.733 38.4052 16.5788
1.8463 0.43 200 1.6947 42.4119 18.2925 34.9702 38.8535 17.3614
1.8548 0.65 300 1.6792 42.5967 18.5244 35.1965 38.9087 17.1514
1.8358 0.87 400 1.6772 42.167 18.2032 34.8647 38.4144 16.5873
1.8129 1.08 500 1.6729 42.6222 18.682 35.3954 38.9104 16.9170
1.8068 1.3 600 1.6709 42.5238 18.311 35.1257 38.6584 16.9451
1.7973 1.52 700 1.6687 42.8715 18.6133 35.3054 38.971 16.7546
1.7979 1.74 800 1.6668 42.9038 18.7483 35.4156 39.1118 16.8791
1.7899 1.95 900 1.6670 43.1142 18.7369 35.4796 39.2724 16.9109

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
13
Safetensors
Model size
77M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Wazzzabeee/flan-t5-small-samsum

Finetuned
(308)
this model

Dataset used to train Wazzzabeee/flan-t5-small-samsum

Evaluation results