metadata
license: apache-2.0
base_model: distilbert-base-uncased-finetuned-sst-2-english
tags:
- generated_from_keras_callback
model-index:
- name: distilbert-base-uncased-finetuned-intel-llm-tf-dataset
results: []
distilbert-base-uncased-finetuned-intel-llm-tf-dataset
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.5438
- Train Accuracy: 0.7955
- Validation Loss: 1.7204
- Validation Accuracy: 0.4167
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 132, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
1.4394 | 0.6364 | 2.2391 | 0.4167 | 0 |
0.7689 | 0.75 | 1.7260 | 0.4167 | 1 |
0.5438 | 0.7955 | 1.7204 | 0.4167 | 2 |
Framework versions
- Transformers 4.34.0
- TensorFlow 2.12.0
- Datasets 2.14.5
- Tokenizers 0.14.0