WaRKiD's picture
Upload TFBertForQuestionAnswering
c8ce8c2
|
raw
history blame
2.56 kB
metadata
license: apache-2.0
base_model: bert-large-uncased-whole-word-masking-finetuned-squad
tags:
  - generated_from_keras_callback
model-index:
  - name: bert-large-uncased-whole-word-masking-finetuned-intel-oneapi-llm-dataset
    results: []

bert-large-uncased-whole-word-masking-finetuned-intel-oneapi-llm-dataset

This model is a fine-tuned version of bert-large-uncased-whole-word-masking-finetuned-squad on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 2.3381
  • Train End Logits Accuracy: 0.4801
  • Train Start Logits Accuracy: 0.4324
  • Validation Loss: 2.1970
  • Validation End Logits Accuracy: 0.5132
  • Validation Start Logits Accuracy: 0.4554
  • Epoch: 1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 8844, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
2.4656 0.4710 0.4189 2.2246 0.5103 0.4548 0
2.3381 0.4801 0.4324 2.1970 0.5132 0.4554 1

Framework versions

  • Transformers 4.34.0
  • TensorFlow 2.12.0
  • Datasets 2.14.5
  • Tokenizers 0.14.0