malicious_url_multiclass_classification
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0900
- Accuracy: 0.9696
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1695 | 1.0 | 7122 | 0.1303 | 0.9556 |
0.1466 | 2.0 | 14245 | 0.1092 | 0.9625 |
0.136 | 3.0 | 21367 | 0.1112 | 0.9616 |
0.1294 | 4.0 | 28490 | 0.0971 | 0.9669 |
0.1124 | 5.0 | 35610 | 0.0900 | 0.9696 |
Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
- Downloads last month
- 2
Model tree for WFullen/malicious_url_multiclass_classification
Base model
distilbert/distilbert-base-uncased