|
--- |
|
base_model: unsloth/mistral-7b-bnb-4bit |
|
library_name: peft |
|
license: mit |
|
datasets: |
|
- yahma/alpaca-cleaned |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
tags: |
|
- physics |
|
- conversational |
|
--- |
|
How to use : |
|
```python |
|
!pip install peft accelerate bitsandbytes |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load the configuration for the fine-tuned model |
|
model_id = "Vijayendra/QST-Mistral-7b" |
|
config = PeftConfig.from_pretrained(model_id) |
|
|
|
# Load the base model and the fine-tuned model |
|
base_model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) |
|
model = PeftModel.from_pretrained(base_model, model_id) |
|
|
|
# Load the tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
|
|
# Prepare the input for inference |
|
prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{} |
|
|
|
### Input: |
|
{} |
|
|
|
### Response: |
|
{}""" |
|
|
|
instruction = "Explain the significance of cyclic operators in machine learning theory." |
|
input_text = "Provide a detailed explanation suitable for a beginner in quantum machine learning." |
|
formatted_prompt = prompt.format(instruction, input_text, "") |
|
|
|
# Tokenize the input |
|
inputs = tokenizer( |
|
formatted_prompt, |
|
return_tensors="pt", |
|
max_length=2048, |
|
truncation=True |
|
).to("cuda") |
|
|
|
# Run inference |
|
model.to("cuda") |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=512, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_k=50 |
|
) |
|
|
|
# Decode and print the output |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(response) |