Model Description

This model is a fine-tuned version of meta-llama/Llama-3.2-1B optimized for Persona Classifier tasks when given a Detailed Persona. The training was done on argilla/FinePersonas-v0.1 dataset with the 10k records.

  • Developed by: Vedant Rajpurohit
  • Model type: Causal Language Model
  • Language(s): English
  • Fine-tuned from model: meta-llama/Llama-3.2-1B

Direct Use

model_id_new = "Vedant3907/Llama-3.2-1B-PersonaClassifier"

tokenzier = AutoTokenizer.from_pretrained(model_id_new)
model_pretrained = AutoModelForCausalLM.from_pretrained(
    model_id_new,
    device_map="auto",
    torch_dtype="float16")

prompt = """Given the persona give the associated labels:
### Persona:
      A social justice activist and blogger focused on anti-colonialism, anti-racism, and media representation, particularly within the context of intersectional people of color experiences.

### Labels:  
"""

pipe = pipeline(task="text-generation",
                        model=model_pretrained,
                        tokenizer=tokenizer,
                        max_new_tokens=50,
                        temperature=0.1,
                        pad_token_id = tokenizer.eos_token_id)

result = pipe(testing_prompt)

print(extract_labels(result[0]['generated_text']))


#The extract_labels function is to print just the lsit of persona generated by model if sometime it generates random things.

'''
import re

def extract_labels(output_text):
    """
    Extracts the list of labels from the generated text.
    Args:
        output_text (str): The raw output text from the model.
    Returns:
        list: A list of labels if found, otherwise an empty list.
    """
    try:
        # Find the content after "Labels:" and extract the list
        match = re.search(r"### Labels:\s*(\[.*?\])", output_text)
        if match:
            labels = eval(match.group(1))  # Convert string representation of list to Python list
            if isinstance(labels, list):
                return labels
    except Exception as e:
        print(f"Error extracting labels: {e}")
    
    # Return an empty list if extraction fails
    return []
'''

Training Details

Training Procedure

The model was fine-tuned using with LoRA adapters, enabling efficient training. Below are the hyperparameters used:

training_arguments = TrainingArguments(
    output_dir=output_dir,                    
    num_train_epochs=3,                       
    per_device_train_batch_size=1,            
    gradient_accumulation_steps=8,            
    optim="paged_adamw_32bit",
    logging_steps=10,
    learning_rate=2e-4,                       
    fp16=True,
    bf16=False,
    max_grad_norm=0.3,                      
    # max_steps=-1,
    warmup_steps=7,                  
    group_by_length=False,
    lr_scheduler_type="cosine",             
    report_to="wandb",
    eval_strategy="steps",
    eval_steps = 0.2
)

Hardware

  • Trained on google colab with its T4 GPU
Downloads last month
16
Safetensors
Model size
1.24B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Vedant3907/Llama-3.2-1B-PersonaClassifier

Finetuned
(192)
this model

Dataset used to train Vedant3907/Llama-3.2-1B-PersonaClassifier