whisper-small-hi / README.md
Udap10's picture
End of training
5498b54 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - minds14
metrics:
  - wer
model-index:
  - name: whisper-small-hi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: minds14
          type: minds14
          config: en-US
          split: None
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 23.117960877296976

whisper-small-hi

This model is a fine-tuned version of openai/whisper-small on the minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6055
  • Wer: 23.1180

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1178 1.0 57 1.1225 115.5898
0.7581 2.0 114 0.6572 50.2075
0.3468 3.0 171 0.5129 27.6823
0.221 4.0 228 0.4969 23.2365
0.1407 5.0 285 0.5054 24.0071
0.08 6.0 342 0.5423 25.3705
0.0395 7.0 399 0.5861 22.1695
0.0194 8.0 456 0.5858 24.3628
0.0221 8.7719 500 0.6055 23.1180

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0