flair_grc_multi_ner / README.md
UGARIT's picture
Update README.md
7a0442e
metadata
language:
  - grc
tags:
  - flair
  - token-classification
  - ner
widget:
  - >-
    ταῦτα εἴπας ὁ Ἀλέξανδρος παρίζει Πέρσῃ ἀνδρὶ ἄνδρα Μακεδόνα ὡς γυναῖκα τῷ
    λόγῳ · οἳ δέ , ἐπείτε σφέων οἱ Πέρσαι ψαύειν ἐπειρῶντο , διεργάζοντο αὐτούς
    .

Named Entity Recognition for Ancient Greek

Pretrained NER tagging model for ancient Greek

Scores & Tagset

Training

Precision Recall F1-score Support
PER 93.39% 96.33% 94.84% 2127
MISC 84.69% 92.50% 88.42% 933
LOC 89.55% 77.32% 82.99% 388

Evaluation

Precision Recall F1-score Support
PER 90.48% 91.94% 91.20% 124
MISC 89.29% 94.34% 91.74% 159
LOC 82.69% 65.15% 72.88% 66

Usage

from flair.data import Sentence
from flair.models import SequenceTagger
  
tagger = SequenceTagger.load("UGARIT/flair_grc_bert_ner")
sentence = Sentence('ταῦτα εἴπας ὁ Ἀλέξανδρος παρίζει Πέρσῃ ἀνδρὶ ἄνδρα Μακεδόνα ὡς γυναῖκα τῷ λόγῳ · οἳ δέ , ἐπείτε σφέων οἱ Πέρσαι ψαύειν ἐπειρῶντο , διεργάζοντο αὐτούς .')
tagger.predict(sentence)
for entity in sentence.get_spans('ner'):
    print(entity)

Citation

if you use this model, please consider citing this work:

@unpublished{yousefetal22
author = "Yousef, Tariq and Palladino, Chiara and Jänicke, Stefan",
title = "Transformer-Based Named Entity Recognition for Ancient Greek",
year = {2022},
month = {11},
doi = "10.13140/RG.2.2.34846.61761"
url = {https://www.researchgate.net/publication/365131651_Transformer-Based_Named_Entity_Recognition_for_Ancient_Greek}
}