Named Entity Recognition for Ancient Greek
Pretrained NER tagging model for ancient Greek
Scores & Tagset
Training:
Precision | Recall | F1-score | Support | |
---|---|---|---|---|
PER | 91.24% | 94.45% | 92.82% | 2127 |
MISC | 80.92% | 83.17% | 82.03% | 933 |
LOC | 86.86% | 78.35% | 82.38% | 388 |
Evaluation
Precision | Recall | F1-score | Support | |
---|---|---|---|---|
PER | 92.00% | 86.79% | 89.32% | 124 |
MISC | 96.43% | 87.10% | 91.53% | 159 |
LOC | 80.00% | 84.85% | 82.35% | 66 |
- F-score (micro) 0.8878
- F-score (macro) 0.8574
- Accuracy 0.8324
Usage
from flair.data import Sentence
from flair.models import SequenceTagger
tagger = SequenceTagger.load("UGARIT/flair_grc_bert_ner")
sentence = Sentence('ταῦτα εἴπας ὁ Ἀλέξανδρος παρίζει Πέρσῃ ἀνδρὶ ἄνδρα Μακεδόνα ὡς γυναῖκα τῷ λόγῳ · οἳ δέ , ἐπείτε σφέων οἱ Πέρσαι ψαύειν ἐπειρῶντο , διεργάζοντο αὐτούς .')
tagger.predict(sentence)
for entity in sentence.get_spans('ner'):
print(entity)
Citation
if you use this model, please consider citing this work:
@unpublished{yousefetal22
author = "Yousef, Tariq and Palladino, Chiara and Jänicke, Stefan",
title = "Transformer-Based Named Entity Recognition for Ancient Greek",
year = {2022},
month = {11},
doi = "10.13140/RG.2.2.34846.61761"
url = {https://www.researchgate.net/publication/358956953_Sequence_Labeling_Architectures_in_Diglossia_-_a_case_study_of_Arabic_and_its_dialects}
}
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.