Triangle104/Lyra4-Gutenberg-12B-Q5_K_M-GGUF

This model was converted to GGUF format from nbeerbower/Lyra4-Gutenberg-12B using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.


Model details:

Sao10K/MN-12B-Lyra-v4 finetuned on jondurbin/gutenberg-dpo-v0.1.

Method

ORPO Finetuned using an RTX 3090 + 4060 Ti for 3 epochs.

Fine-tune Llama 3 with ORPO


Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Triangle104/Lyra4-Gutenberg-12B-Q5_K_M-GGUF --hf-file lyra4-gutenberg-12b-q5_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Triangle104/Lyra4-Gutenberg-12B-Q5_K_M-GGUF --hf-file lyra4-gutenberg-12b-q5_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Triangle104/Lyra4-Gutenberg-12B-Q5_K_M-GGUF --hf-file lyra4-gutenberg-12b-q5_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Triangle104/Lyra4-Gutenberg-12B-Q5_K_M-GGUF --hf-file lyra4-gutenberg-12b-q5_k_m.gguf -c 2048
Downloads last month
3
GGUF
Model size
12.2B params
Architecture
llama

5-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Triangle104/Lyra4-Gutenberg-12B-Q5_K_M-GGUF

Quantized
(10)
this model

Dataset used to train Triangle104/Lyra4-Gutenberg-12B-Q5_K_M-GGUF

Collections including Triangle104/Lyra4-Gutenberg-12B-Q5_K_M-GGUF

Evaluation results