Triangle104's picture
Update README.md
6b3e0c3 verified
metadata
base_model: nbeerbower/Hermes2-Gutenberg2-Mistral-7B
datasets:
  - jondurbin/gutenberg-dpo-v0.1
  - nbeerbower/gutenberg2-dpo
library_name: transformers
license: apache-2.0
tags:
  - llama-cpp
  - gguf-my-repo
model-index:
  - name: Hermes2-Gutenberg2-Mistral-7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 37.21
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 28.91
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 5.66
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 5.26
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 16.92
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 22.14
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Hermes2-Gutenberg2-Mistral-7B
          name: Open LLM Leaderboard

Triangle104/Hermes2-Gutenberg2-Mistral-7B-Q6_K-GGUF

This model was converted to GGUF format from nbeerbower/Hermes2-Gutenberg2-Mistral-7B using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.


Model details:

Hermes2-Gutenberg2-Mistral-7B

NousResearch/Hermes-2-Pro-Mistral-7B finetuned on jondurbin/gutenberg-dpo-v0.1 and nbeerbower/gutenberg2-dpo. Method

ORPO tuned with 2x RTX 3090 for 3 epochs. Open LLM Leaderboard Evaluation Results

Detailed results can be found here Metric Value Avg. 19.35 IFEval (0-Shot) 37.21 BBH (3-Shot) 28.91 MATH Lvl 5 (4-Shot) 5.66 GPQA (0-shot) 5.26 MuSR (0-shot) 16.92 MMLU-PRO (5-shot) 22.14


Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Triangle104/Hermes2-Gutenberg2-Mistral-7B-Q6_K-GGUF --hf-file hermes2-gutenberg2-mistral-7b-q6_k.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Triangle104/Hermes2-Gutenberg2-Mistral-7B-Q6_K-GGUF --hf-file hermes2-gutenberg2-mistral-7b-q6_k.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Triangle104/Hermes2-Gutenberg2-Mistral-7B-Q6_K-GGUF --hf-file hermes2-gutenberg2-mistral-7b-q6_k.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Triangle104/Hermes2-Gutenberg2-Mistral-7B-Q6_K-GGUF --hf-file hermes2-gutenberg2-mistral-7b-q6_k.gguf -c 2048