Triangle104's picture
Update README.md
4cba8f3 verified
metadata
base_model: nbeerbower/Gemma2-Gutenberg-Doppel-9B
datasets:
  - jondurbin/gutenberg-dpo-v0.1
  - nbeerbower/gutenberg2-dpo
library_name: transformers
license: gemma
tags:
  - llama-cpp
  - gguf-my-repo
model-index:
  - name: Gemma2-Gutenberg-Doppel-9B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 71.71
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Gemma2-Gutenberg-Doppel-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 41.08
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Gemma2-Gutenberg-Doppel-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 3.47
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Gemma2-Gutenberg-Doppel-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 10.63
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Gemma2-Gutenberg-Doppel-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 17.3
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Gemma2-Gutenberg-Doppel-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 34.75
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Gemma2-Gutenberg-Doppel-9B
          name: Open LLM Leaderboard

Triangle104/Gemma2-Gutenberg-Doppel-9B-Q5_K_S-GGUF

This model was converted to GGUF format from nbeerbower/Gemma2-Gutenberg-Doppel-9B using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.


Model details:

Gemma2-Gutenberg-Doppel-9B

UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 finetuned on jondurbin/gutenberg-dpo-v0.1 and nbeerbower/gutenberg2-dpo. Method

ORPO finetuned using 2x A40 for 3 epochs. Open LLM Leaderboard Evaluation Results

Detailed results can be found here Metric Value Avg. 29.82 IFEval (0-Shot) 71.71 BBH (3-Shot) 41.08 MATH Lvl 5 (4-Shot) 3.47 GPQA (0-shot) 10.63 MuSR (0-shot) 17.30 MMLU-PRO (5-shot) 34.75


Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Triangle104/Gemma2-Gutenberg-Doppel-9B-Q5_K_S-GGUF --hf-file gemma2-gutenberg-doppel-9b-q5_k_s.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Triangle104/Gemma2-Gutenberg-Doppel-9B-Q5_K_S-GGUF --hf-file gemma2-gutenberg-doppel-9b-q5_k_s.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Triangle104/Gemma2-Gutenberg-Doppel-9B-Q5_K_S-GGUF --hf-file gemma2-gutenberg-doppel-9b-q5_k_s.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Triangle104/Gemma2-Gutenberg-Doppel-9B-Q5_K_S-GGUF --hf-file gemma2-gutenberg-doppel-9b-q5_k_s.gguf -c 2048