See axolotl config
axolotl version: 0.6.0
# git clone https://github.com/axolotl-ai-cloud/axolotl
# cd axolotl
# git checkout 844331005c1ef45430ff26b9f42f757dce6ee66a
# pip3 install packaging ninja huggingface_hub[cli]
# pip3 install -e '.[flash-attn,deepspeed]'
# apt update && apt install libopenmpi-dev
# pip install mpi4py
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# python -m axolotl.cli.preprocess nemo-rp-test-human.yml
# accelerate launch -m axolotl.cli.train qwen-rp-test-human-lite.yml
# python -m axolotl.cli.merge_lora qwen-rp-test-human.yml
# huggingface-cli upload ToastyPigeon/tqi-some-rp-40 train-workspace/merged . --exclude "*.md"
# sleep 10h; runpodctl stop pod $RUNPOD_POD_ID &
# git clone https://github.com/axolotl-ai-cloud/axolotl && cd axolotl && pip3 install packaging ninja huggingface_hub[cli] && pip3 install -e '.[flash-attn,deepspeed]' && cd ..
# apt update && apt install libopenmpi-dev && pip install mpi4py
# Model
base_model: Qwen/Qwen2.5-14B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
bf16: true
fp16:
tf32: false
flash_attention: true
special_tokens:
# Output
output_dir: ./train-workspace
hub_model_id: ToastyPigeon/qwen-inst-rp-lite-test-h-qlora
hub_strategy: "checkpoint"
auto_resume_from_checkpoint: true
#resume_from_checkpoint: ./train-workspace/checkpoint-304
saves_per_epoch: 5
save_total_limit: 3
# Data
sequence_len: 8192 # fits
min_sample_len: 2048
chat_template: chatml
dataset_prepared_path: last_run_prepared
datasets:
- path: ToastyPigeon/some-rp
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
warmup_steps: 20
shuffle_merged_datasets: true
sample_packing: true
pad_to_sequence_len: true
# Batching
num_epochs: 1
gradient_accumulation_steps: 1
micro_batch_size: 4
eval_batch_size: 1
# Evaluation
val_set_size: 80
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false
save_safetensors: true
# WandB
wandb_project: Qwen-Rp-Test
#wandb_entity:
gradient_checkpointing: 'unsloth'
gradient_checkpointing_kwargs:
use_reentrant: false
unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true
# LoRA
adapter: qlora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.125
lora_target_linear: true
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
#peft_use_rslora: true
#loraplus_lr_ratio: 8
# Optimizer
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 5e-5
cosine_min_lr_ratio: 0.1
weight_decay: 0.01
max_grad_norm: 1.0
# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
#debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json # previously blank
fsdp:
fsdp_config:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
gc_steps: 10
seed: 69
qwen-inst-rp-lite-test-h-qlora
This model is a fine-tuned version of Qwen/Qwen2.5-14B-Instruct on the ToastyPigeon/some-rp dataset. It achieves the following results on the evaluation set:
- Loss: 2.4369
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 69
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are: No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.6892 | 0.0033 | 1 | 2.8023 |
2.5375 | 0.1030 | 31 | 2.4737 |
2.5817 | 0.2060 | 62 | 2.4597 |
2.3864 | 0.3090 | 93 | 2.4535 |
2.3276 | 0.4120 | 124 | 2.4488 |
2.4463 | 0.5150 | 155 | 2.4445 |
2.2724 | 0.6179 | 186 | 2.4414 |
2.3688 | 0.7209 | 217 | 2.4394 |
2.3059 | 0.8239 | 248 | 2.4378 |
2.4368 | 0.9269 | 279 | 2.4369 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 14
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.