TieIncred commited on
Commit
a66e470
·
1 Parent(s): 2ddd9f0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ model-index:
9
+ - name: distilbert-base-uncased-finetuned-intro-verizon2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # distilbert-base-uncased-finetuned-intro-verizon2
17
+
18
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0327
21
+ - Accuracy: 1.0
22
+ - F1: 1.0
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 64
43
+ - eval_batch_size: 64
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 20
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
53
+ | 1.3459 | 1.0 | 7 | 1.2548 | 0.5814 | 0.4575 |
54
+ | 1.1898 | 2.0 | 14 | 1.0488 | 0.7209 | 0.6261 |
55
+ | 1.1052 | 3.0 | 21 | 0.7911 | 0.7442 | 0.6506 |
56
+ | 0.7628 | 4.0 | 28 | 0.5534 | 1.0 | 1.0 |
57
+ | 0.6325 | 5.0 | 35 | 0.3608 | 1.0 | 1.0 |
58
+ | 0.303 | 6.0 | 42 | 0.2387 | 1.0 | 1.0 |
59
+ | 0.2297 | 7.0 | 49 | 0.1626 | 1.0 | 1.0 |
60
+ | 0.1663 | 8.0 | 56 | 0.1152 | 1.0 | 1.0 |
61
+ | 0.1232 | 9.0 | 63 | 0.0866 | 1.0 | 1.0 |
62
+ | 0.1056 | 10.0 | 70 | 0.0683 | 1.0 | 1.0 |
63
+ | 0.0802 | 11.0 | 77 | 0.0572 | 1.0 | 1.0 |
64
+ | 0.0589 | 12.0 | 84 | 0.0497 | 1.0 | 1.0 |
65
+ | 0.0561 | 13.0 | 91 | 0.0445 | 1.0 | 1.0 |
66
+ | 0.0567 | 14.0 | 98 | 0.0404 | 1.0 | 1.0 |
67
+ | 0.0457 | 15.0 | 105 | 0.0376 | 1.0 | 1.0 |
68
+ | 0.0417 | 16.0 | 112 | 0.0357 | 1.0 | 1.0 |
69
+ | 0.0412 | 17.0 | 119 | 0.0344 | 1.0 | 1.0 |
70
+ | 0.0389 | 18.0 | 126 | 0.0335 | 1.0 | 1.0 |
71
+ | 0.04 | 19.0 | 133 | 0.0329 | 1.0 | 1.0 |
72
+ | 0.0394 | 20.0 | 140 | 0.0327 | 1.0 | 1.0 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.16.2
78
+ - Pytorch 2.1.0+cu121
79
+ - Datasets 2.18.0
80
+ - Tokenizers 0.15.2