distilbert-base-uncased-finetuned-intro-verizon2

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0327
  • Accuracy: 1.0
  • F1: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.3459 1.0 7 1.2548 0.5814 0.4575
1.1898 2.0 14 1.0488 0.7209 0.6261
1.1052 3.0 21 0.7911 0.7442 0.6506
0.7628 4.0 28 0.5534 1.0 1.0
0.6325 5.0 35 0.3608 1.0 1.0
0.303 6.0 42 0.2387 1.0 1.0
0.2297 7.0 49 0.1626 1.0 1.0
0.1663 8.0 56 0.1152 1.0 1.0
0.1232 9.0 63 0.0866 1.0 1.0
0.1056 10.0 70 0.0683 1.0 1.0
0.0802 11.0 77 0.0572 1.0 1.0
0.0589 12.0 84 0.0497 1.0 1.0
0.0561 13.0 91 0.0445 1.0 1.0
0.0567 14.0 98 0.0404 1.0 1.0
0.0457 15.0 105 0.0376 1.0 1.0
0.0417 16.0 112 0.0357 1.0 1.0
0.0412 17.0 119 0.0344 1.0 1.0
0.0389 18.0 126 0.0335 1.0 1.0
0.04 19.0 133 0.0329 1.0 1.0
0.0394 20.0 140 0.0327 1.0 1.0

Framework versions

  • Transformers 4.16.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
105
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.