videomae-large / README.md
Tianjiao-Yu's picture
End of training
58ac5f7 verified
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large-finetuned-kinetics
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: videomae-large
    results: []

videomae-large

This model is a fine-tuned version of MCG-NJU/videomae-large-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5042
  • Accuracy: 0.4286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 220

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.6619 0.03 7 2.7017 0.0
2.6232 1.03 14 2.6628 0.0
2.381 2.03 21 2.5798 0.1667
2.2215 3.03 28 2.4757 0.1667
1.7389 4.03 35 2.3636 0.2333
1.3366 5.03 42 2.2424 0.3
1.1946 6.03 49 2.1675 0.3
0.6809 7.03 56 2.0548 0.3667
0.5255 8.03 63 2.0410 0.4
0.3285 9.03 70 1.9539 0.4
0.2849 10.03 77 1.8536 0.4667
0.1832 11.03 84 1.8293 0.4333
0.1307 12.03 91 1.8200 0.4
0.0901 13.03 98 1.8355 0.4
0.0636 14.03 105 1.8201 0.4333
0.0413 15.03 112 1.7750 0.4667
0.0427 16.03 119 1.7460 0.5333
0.0254 17.03 126 1.7804 0.5333
0.0203 18.03 133 1.8869 0.4333
0.0174 19.03 140 1.7741 0.5667
0.0154 20.03 147 1.7401 0.5333
0.0136 21.03 154 1.7672 0.5
0.0116 22.03 161 1.7793 0.5333
0.0123 23.03 168 1.8018 0.4667
0.0102 24.03 175 1.8024 0.5
0.0103 25.03 182 1.8058 0.5
0.0089 26.03 189 1.8106 0.5
0.0088 27.03 196 1.8029 0.5
0.0092 28.03 203 1.7961 0.5
0.0083 29.03 210 1.7940 0.5
0.0099 30.03 217 1.7922 0.5
0.0085 31.01 220 1.7920 0.5

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2