YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
A MBARTHEZ MODEL TRAINED FOR QUESTION GENERATION
Training
The model has been trained on different french and english corpus (FQuAD, PIAF and SQuAD)
Generate
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Getting the data
access_token = "hf_......"
tokenizer = AutoTokenizer.from_pretrained("ThomasGerald/MBARTHEZ-QG", use_auth_token=access_token)
model = AutoModelForSeq2SeqLM.from_pretrained("ThomasGerald/MBARTHEZ-QG", use_auth_token=access_token)
# text input exemple notice we use the token <hl> to delimite the support of the question
text = ("La recherche moderne considère généralement que la langue grecque n'est pas née en Grèce," +
"mais elle n'est pas arrivée à un consensus quant à la date d'arrivée des groupes parlant un "+
"« proto-grec », qui s'est produite durant des phases préhistoriques pour lesquelles il n'y a"+
"pas de texte indiquant quelles langues étaient parlées. Les premiers textes écrits en grec <hl>sont"+
"les tablettes en linéaire B de l'époque mycénienne<hl>, au XIVe siècle av. J.-C., ce qui indique que"+
"des personnes parlant un dialecte grec sont présentes en Grèce au plus tard durant cette période."+
" La linguistique n'est pas en mesure de trancher, pas plus que l'archéologie.")
tokenized_text = tokenizer([text], return_tensors="pt")
# Output conditionnaly to the language (here two tokens possible '[fr_XX]' and '[en_XX]')
output_ids = model.generate(**tokenized_text, forced_bos_token_id=tokenizer.convert_tokens_to_ids(['[fr_XX]']))
# Decoding
output = tokenizer.batch_decode(output_ids, skip_special_tokens=False)
# output:
'''['</s>[fr_XX] Quels sont les premiers textes écrits en grec?</s>']'''
We can also generate question in english from french context by specifying the begining of sentence token ('[en_XX]'). Considering the previous code prepending the following one we can generate english questions executing :
output_ids = model.generate(**tokenized_text, forced_bos_token_id=tokenizer.convert_tokens_to_ids(['[en_XX]']))
output = tokenizer.batch_decode(output_idsskip_special_tokens=False)
# output:
'''['</s>[en_XX] What are the first texts written in grec?</s>']'''
Of course you can also generate questions from english text :
# text input exemple notice we use the token <hl> to delimite the support of the question
text = ("By 371 BC, Thebes was in the ascendancy, defeating Sparta at" +
"<hl>the Battle of Leuctra<hl>, killing the Spartan king Cleombrotus I" +
", and invading Laconia. Further Theban successes against Sparta" +
"in 369 led to Messenia gaining independence; Sparta never recovered" +
"from the loss of Messenia's fertile land and the helot workforce it" +
"provided.[50] The rising power of Thebes led Sparta and Athens to join" +
"forces; in 362 they were defeated by Thebes at the Battle of Mantinea." +
" In the aftermath of Mantinea, none of the major Greek states were able" +
"to dominate. Though Thebes had won the battle, their general Epaminondas" +
"was killed, and they spent the following decades embroiled in wars with"+
"their neighbours; Athens, meanwhile, saw its second naval alliance," +
" formed in 377, collapse in the mid-350s.")
tokenized_text = tokenizer([text], return_tensors="pt")
# French question
output_ids = model.generate(**tokenized_text, forced_bos_token_id=tokenizer.convert_tokens_to_ids(['[fr_XX]']))
# Decoding
output = tokenizer.batch_decode(output_ids, skip_special_tokens=False)
# Notice it does not translate "Sparta" which is "Sparte" in french
'''['</s>[fr_XX] À quelle bataille Sparta a-t-il été vaincu par Thebes?</s>']'''
# English question
output_ids = model.generate(**tokenized_text, forced_bos_token_id=tokenizer.convert_tokens_to_ids(['[en_XX]']))
# Decoding
output = tokenizer.batch_decode(output_ids, skip_special_tokens=False)
'''['</s>[en_XX] At what battle did Thebes defeat Sparta?</s>']'''
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.