|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- invoice |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-invoice |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: Invoice |
|
type: invoice |
|
args: invoice |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 1.0 |
|
- name: Recall |
|
type: recall |
|
value: 1.0 |
|
- name: F1 |
|
type: f1 |
|
value: 1.0 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 1.0 |
|
--- |
|
|
|
# LayoutLM-v3 model fine-tuned on invoice dataset |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the invoice dataset. |
|
|
|
We use Microsoft’s LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0012 |
|
- Precision: 1.0 |
|
- Recall: 1.0 |
|
- F1: 1.0 |
|
- Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
All the training codes are available from the below GitHub link. |
|
|
|
https://github.com/Theivaprakasham/layoutlmv3 |
|
|
|
|
|
The model can be evaluated at the HuggingFace Spaces link: |
|
|
|
https://huggingface.co/spaces/Theivaprakasham/layoutlmv3_invoice |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 2.0 | 100 | 0.0878 | 0.968 | 0.9817 | 0.9748 | 0.9966 | |
|
| No log | 4.0 | 200 | 0.0241 | 0.972 | 0.9858 | 0.9789 | 0.9971 | |
|
| No log | 6.0 | 300 | 0.0186 | 0.972 | 0.9858 | 0.9789 | 0.9971 | |
|
| No log | 8.0 | 400 | 0.0184 | 0.9854 | 0.9574 | 0.9712 | 0.9956 | |
|
| 0.1308 | 10.0 | 500 | 0.0121 | 0.972 | 0.9858 | 0.9789 | 0.9971 | |
|
| 0.1308 | 12.0 | 600 | 0.0076 | 0.9939 | 0.9878 | 0.9908 | 0.9987 | |
|
| 0.1308 | 14.0 | 700 | 0.0047 | 1.0 | 0.9959 | 0.9980 | 0.9996 | |
|
| 0.1308 | 16.0 | 800 | 0.0036 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | |
|
| 0.1308 | 18.0 | 900 | 0.0045 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | |
|
| 0.0069 | 20.0 | 1000 | 0.0043 | 0.9960 | 0.9980 | 0.9970 | 0.9996 | |
|
| 0.0069 | 22.0 | 1100 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0069 | 24.0 | 1200 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0069 | 26.0 | 1300 | 0.0014 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0069 | 28.0 | 1400 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0026 | 30.0 | 1500 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0026 | 32.0 | 1600 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0026 | 34.0 | 1700 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0026 | 36.0 | 1800 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0026 | 38.0 | 1900 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.002 | 40.0 | 2000 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.0.dev0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|