TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Ziya Coding 34B v1.0 - GPTQ
- Model creator: Fengshenbang-LM
- Original model: Ziya Coding 34B v1.0
Description
This repo contains GPTQ model files for Fengshenbang-LM's Ziya Coding 34B v1.0.
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- Fengshenbang-LM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: Ziya
<human>:
Please Complete the given function below according to the docstring:
{prompt}
<bot>:
Licensing
The creator of the source model has listed its license as gpl-3.0
, and this quantization has therefore used that same license.
As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: Fengshenbang-LM's Ziya Coding 34B v1.0.
Provided files, and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
Explanation of GPTQ parameters
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as
desc_act
. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
---|---|---|---|---|---|---|---|---|---|
main | 4 | None | Yes | 0.1 | Evol Instruct Code | 8192 | 17.69 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
gptq-4bit-128g-actorder_True | 4 | 128 | Yes | 0.1 | Evol Instruct Code | 8192 | 18.33 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
gptq-4bit-32g-actorder_True | 4 | 32 | Yes | 0.1 | Evol Instruct Code | 8192 | 20.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
gptq-3bit-128g-actorder_True | 3 | 128 | Yes | 0.1 | Evol Instruct Code | 8192 | 14.14 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
gptq-8bit-128g-actorder_True | 8 | 128 | Yes | 0.1 | Evol Instruct Code | 8192 | 34.30 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
gptq-8bit-128g-actorder_True | 8 | None | Yes | 0.1 | Evol Instruct Code | 8192 | 34.30 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
How to download, including from branches
In text-generation-webui
To download from the main
branch, enter TheBloke/Ziya-Coding-34B-v1.0-GPTQ
in the "Download model" box.
To download from another branch, add :branchname
to the end of the download name, eg TheBloke/Ziya-Coding-34B-v1.0-GPTQ:gptq-4bit-128g-actorder_True
From the command line
I recommend using the huggingface-hub
Python library:
pip3 install huggingface-hub
To download the main
branch to a folder called Ziya-Coding-34B-v1.0-GPTQ
:
mkdir Ziya-Coding-34B-v1.0-GPTQ
huggingface-cli download TheBloke/Ziya-Coding-34B-v1.0-GPTQ --local-dir Ziya-Coding-34B-v1.0-GPTQ --local-dir-use-symlinks False
To download from a different branch, add the --revision
parameter:
mkdir Ziya-Coding-34B-v1.0-GPTQ
huggingface-cli download TheBloke/Ziya-Coding-34B-v1.0-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir Ziya-Coding-34B-v1.0-GPTQ --local-dir-use-symlinks False
More advanced huggingface-cli download usage
If you remove the --local-dir-use-symlinks False
parameter, the files will instead be stored in the central Huggingface cache directory (default location on Linux is: ~/.cache/huggingface
), and symlinks will be added to the specified --local-dir
, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
The cache location can be changed with the HF_HOME
environment variable, and/or the --cache-dir
parameter to huggingface-cli
.
For more documentation on downloading with huggingface-cli
, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer
:
pip3 install hf_transfer
And set environment variable HF_HUB_ENABLE_HF_TRANSFER
to 1
:
mkdir Ziya-Coding-34B-v1.0-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Ziya-Coding-34B-v1.0-GPTQ --local-dir Ziya-Coding-34B-v1.0-GPTQ --local-dir-use-symlinks False
Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1
before the download command.
With git
(not recommended)
To clone a specific branch with git
, use a command like this:
git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/Ziya-Coding-34B-v1.0-GPTQ
Note that using Git with HF repos is strongly discouraged. It will be much slower than using huggingface-hub
, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the .git
folder as a blob.)
How to easily download and use this model in text-generation-webui.
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
- Click the Model tab.
- Under Download custom model or LoRA, enter
TheBloke/Ziya-Coding-34B-v1.0-GPTQ
.
- To download from a specific branch, enter for example
TheBloke/Ziya-Coding-34B-v1.0-GPTQ:gptq-4bit-128g-actorder_True
- see Provided Files above for the list of branches for each option.
- Click Download.
- The model will start downloading. Once it's finished it will say "Done".
- In the top left, click the refresh icon next to Model.
- In the Model dropdown, choose the model you just downloaded:
Ziya-Coding-34B-v1.0-GPTQ
- The model will automatically load, and is now ready for use!
- If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
quantize_config.json
.
- Once you're ready, click the Text Generation tab and enter a prompt to get started!
Serving this model from Text Generation Inference (TGI)
It's recommended to use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0
Example Docker parameters:
--model-id TheBloke/Ziya-Coding-34B-v1.0-GPTQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
pip3 install huggingface-hub
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''<human>:
Please Complete the given function below according to the docstring:
{prompt}
<bot>:
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: {response}")
How to use this GPTQ model from Python code
Install the necessary packages
Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
pip3 install transformers optimum
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.4.2
pip3 install .
You can then use the following code
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/Ziya-Coding-34B-v1.0-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-128g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Tell me about AI"
prompt_template=f'''<human>:
Please Complete the given function below according to the docstring:
{prompt}
<bot>:
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
Compatibility
The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with Occ4m's GPTQ-for-LLaMa fork.
ExLlama is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
Huggingface Text Generation Inference (TGI) is compatible with all GPTQ models.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Fengshenbang-LM's Ziya Coding 34B v1.0
Ziya-Coding-34B-v1.0
姜子牙系列模型
- Ziya-LLaMA-13B-v1.1
- Ziya-LLaMA-13B-v1
- Ziya-LLaMA-7B-Reward
- Ziya-LLaMA-13B-Pretrain-v1
- Ziya-BLIP2-14B-Visual-v1
- Ziya-Writing-LLaMa-13B-v1
- Ziya-Coding-15B-v1
简介 Brief Introduction
使用自然语言生成高质量的代码是大模型落地中的高频需求。今天,IDEA研究院封神榜团队正式开源最新的代码大模型Ziya-Coding-34B-v1.0,我们在HumanEval Pass@1的评测上,取得了75.5的好成绩,超过了GPT-4(67.0)的得分,也成为目前已知开源模型新高。封神榜团队正在为社区提供先进的大模型技术和经验,帮助生产和定制更多优秀垂类模型,推进大模型生态发展。
Generating high-quality code using natural language is a high-frequency demand in the deployment of large models. Today, the IDEA Research Institute's Fengshenbang team officially open-sourced the latest code model, Ziya-Coding-34B-v1.0. We achieved a good score of 75.5 on the HumanEval Pass@1 evaluation, surpassing the score of GPT-4 (67.0) and setting a new high for known open-source models. The Fengshenbang team is providing the community with advanced large model technology and experience, helping to produce and customize more excellent vertical models, and promoting the development of the large model ecosystem.
更多细节可以参考我们的公众号文章:
再创新高!姜子牙大模型开源代码大模型Ziya-Coding-34B-v1.0
姜子牙大模型系列 | 代码模型ziya-coding发布!低成本微调即可学会在专有场景编程
软件依赖
pip install torch==1.12.1 tokenizers==0.13.3 git+https://github.com/huggingface/transformers
模型信息 Model Information
在9月初,我们开源了基于StarCoder-15B的代码模型Ziya-Coding-15B-v1,我们将训练Ziya-Coding-15B-v1积累的训练经验迁移到了新版本的训练中。
我们收集并构造了约45万涵盖了几乎所有代码相关任务的指令数据进行第一阶段的微调,这其中包括约10万的中文指令和35万的英文指令,保证了数据的多样性,在构造数据时,我们充分利用了高质量的无指令代码数据,使用LLM生成对应的指令,扩充得到了更多高质量的代码指令数据。
同时实验过程中,我们注意到,代码指令的难度和正确性是训练代码模型成功的关键。因此,我们引入了第二阶段的精调。我们使用evol-instruct的方法生成了大量高难度多要求的代码指令数据,并利用代码编译器作为反馈,筛选出能够通过编译的代码。最后利用LLM生成单元测试进一步验证代码的正确性。我们最终筛选出了46k数据,在第一阶段模型的基础上,使用较低的学习率进行微调,最终得到了我们的Ziya-coding-34B-v1.0。
In early September, we open-sourced the code model Ziya-Coding-15B-v1 based on StarCoder-15B. The training experience accumulated in training Ziya-Coding-15B-v1 was transferred to the training of the new version.
We collected and constructed about 450,000 instruction data covering almost all code-related tasks for the first stage of fine-tuning. This includes about 100,000 Chinese instructions and 350,000 English instructions, ensuring data diversity. When constructing the data, we made full use of high-quality non-instructional code data, used LLM to generate corresponding instructions, and expanded to obtain more high-quality code instruction data.
During the experiment, we noticed that the difficulty and correctness of code instructions are key to the successful training of code models. Therefore, we introduced a second stage of fine-tuning. We used the evol-instruct method to generate a large amount of high-difficulty, multi-requirement code instruction data, and used a code compiler as feedback to filter out code that could pass compilation. Finally, we used LLM to generate unit tests to further verify the correctness of the code. We ultimately filtered out 46k data, and on the basis of the first-stage model, we fine-tuned it with a lower learning rate to finally obtain our Ziya-coding-34B-v1.0.
效果评估 Performance
Model | HumanEval(pass@1) |
---|---|
Ziya-Coding-34B-v1.0 | 75.5% |
CodeFuse-CodeLlama-34B | 74.4% |
Phind-CodeLLaMa-34B-v2 | 73.8% |
WizardCoder-Python-34B-V1.0 | 73.2% |
GPT-4 | 67.0% |
PanGu-Coder2 15B | 61.6% |
WizardCoder-15B-V1.0 | 59.8% |
CodeLlama-34b-Python | 53.7% |
Ziya-Coding-15B-v1 | 50.1% |
CodeLlama-34b | 48.8% |
GPT-3.5 | 48.1% |
StarCoder-15B | 33.6% |
其中,我们对微调数据集进行了去污处理,避免数据泄露,HumanEval的pass@1指标是贪婪生成的结果。
Prompt Format
"<human>: \nPlease Complete the given function below according to the docstring: \n{prompt}\n<bot>: \n"
In this process, we performed a decontamination process on the fine-tuning dataset to avoid data leakage. The pass@1 metric for HumanEval is based on the results of greedy generation.
使用 Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
device = torch.device("cuda")
prompt = "写一段快速排序"
model = AutoModelForCausalLM.from_pretrained("IDEA-CCNL/Ziya-Coding-34B-v1.0", torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Ziya-Coding-34B-v1.0", use_fast=False)
input = f"<human>: \n{prompt}\n<bot>: \n"
input_ids = tokenizer(input, return_tensors="pt").input_ids.to(device)
generate_ids = model.generate(
input_ids,
max_new_tokens = 512,
do_sample = True,
top_p = 0.85,
temperature = 1.0,
repetition_penalty = 1.0,
eos_token_id = tokenizer.eos_token_id,
pad_token_id = tokenizer.pad_token_id,
)
output = tokenizer.batch_decode(generate_ids)[0]
print(output)
引用 Citation
如果您在您的工作中使用了我们的模型,可以引用我们的论文:
If you are using the resource for your work, please cite the our paper:
@article{fengshenbang,
author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen},
title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
journal = {CoRR},
volume = {abs/2209.02970},
year = {2022}
}
You can also cite our website:
欢迎引用我们的网站:
@misc{Fengshenbang-LM,
title={Fengshenbang-LM},
author={IDEA-CCNL},
year={2021},
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
- Downloads last month
- 25
Model tree for TheBloke/Ziya-Coding-34B-v1.0-GPTQ
Base model
IDEA-CCNL/Ziya-Coding-34B-v1.0