TheBloke's picture
Upload README.md
ae27df7
metadata
base_model: VAGOsolutions/SauerkrautLM-Mixtral-8x7B-Instruct
datasets:
  - argilla/distilabel-math-preference-dpo
inference: false
language:
  - en
  - de
  - fr
  - it
  - es
library_name: transformers
license: apache-2.0
model_creator: VAGO solutions
model_name: SauerkrautLM Mixtral 8X7B Instruct
model_type: mixtral
pipeline_tag: text-generation
prompt_template: |
  [INST] {prompt} [/INST]
quantized_by: TheBloke
tags:
  - mistral
  - finetune
  - dpo
  - Instruct
  - augmentation
  - german
  - mixtral
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


SauerkrautLM Mixtral 8X7B Instruct - GGUF

Description

This repo contains GGUF format model files for VAGO solutions's SauerkrautLM Mixtral 8X7B Instruct.

About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplete list of clients and libraries that are known to support GGUF:

  • llama.cpp. The source project for GGUF. Offers a CLI and a server option.
  • text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
  • KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
  • GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
  • LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
  • LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
  • Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
  • candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.
  • ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.

Repositories available

Prompt template: Mistral

[INST] {prompt} [/INST]

Compatibility

These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d

They are also compatible with many third party UIs and libraries - please see the list at the top of this README.

Explanation of quantisation methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
sauerkrautlm-mixtral-8x7b-instruct.Q2_K.gguf Q2_K 2 15.64 GB 18.14 GB smallest, significant quality loss - not recommended for most purposes
sauerkrautlm-mixtral-8x7b-instruct.Q3_K_M.gguf Q3_K_M 3 20.36 GB 22.86 GB very small, high quality loss
sauerkrautlm-mixtral-8x7b-instruct.Q4_0.gguf Q4_0 4 26.44 GB 28.94 GB legacy; small, very high quality loss - prefer using Q3_K_M
sauerkrautlm-mixtral-8x7b-instruct.Q4_K_M.gguf Q4_K_M 4 26.44 GB 28.94 GB medium, balanced quality - recommended
sauerkrautlm-mixtral-8x7b-instruct.Q5_0.gguf Q5_0 5 32.23 GB 34.73 GB legacy; medium, balanced quality - prefer using Q4_K_M
sauerkrautlm-mixtral-8x7b-instruct.Q5_K_M.gguf Q5_K_M 5 32.23 GB 34.73 GB large, very low quality loss - recommended
sauerkrautlm-mixtral-8x7b-instruct.Q6_K.gguf Q6_K 6 38.38 GB 40.88 GB very large, extremely low quality loss
sauerkrautlm-mixtral-8x7b-instruct.Q8_0.gguf Q8_0 8 49.62 GB 52.12 GB very large, extremely low quality loss - not recommended

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to download GGUF files

Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.

The following clients/libraries will automatically download models for you, providing a list of available models to choose from:

  • LM Studio
  • LoLLMS Web UI
  • Faraday.dev

In text-generation-webui

Under Download Model, you can enter the model repo: TheBloke/SauerkrautLM-Mixtral-8x7B-Instruct-GGUF and below it, a specific filename to download, such as: sauerkrautlm-mixtral-8x7b-instruct.Q4_K_M.gguf.

Then click Download.

On the command line, including multiple files at once

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

Then you can download any individual model file to the current directory, at high speed, with a command like this:

huggingface-cli download TheBloke/SauerkrautLM-Mixtral-8x7B-Instruct-GGUF sauerkrautlm-mixtral-8x7b-instruct.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
More advanced huggingface-cli download usage (click to read)

You can also download multiple files at once with a pattern:

huggingface-cli download TheBloke/SauerkrautLM-Mixtral-8x7B-Instruct-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/SauerkrautLM-Mixtral-8x7B-Instruct-GGUF sauerkrautlm-mixtral-8x7b-instruct.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

Example llama.cpp command

Make sure you are using llama.cpp from commit d0cee0d or later.

./main -ngl 35 -m sauerkrautlm-mixtral-8x7b-instruct.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "[INST] {prompt} [/INST]"

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 32768 to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions can be found in the text-generation-webui documentation, here: text-generation-webui/docs/04 ‐ Model Tab.md.

How to run from Python code

You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.

How to load this model in Python code, using llama-cpp-python

For full documentation, please see: llama-cpp-python docs.

First install the package

Run one of the following commands, according to your system:

# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python

# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-python

Simple llama-cpp-python example code

from llama_cpp import Llama

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
  model_path="./sauerkrautlm-mixtral-8x7b-instruct.Q4_K_M.gguf",  # Download the model file first
  n_ctx=32768,  # The max sequence length to use - note that longer sequence lengths require much more resources
  n_threads=8,            # The number of CPU threads to use, tailor to your system and the resulting performance
  n_gpu_layers=35         # The number of layers to offload to GPU, if you have GPU acceleration available
)

# Simple inference example
output = llm(
  "[INST] {prompt} [/INST]", # Prompt
  max_tokens=512,  # Generate up to 512 tokens
  stop=["</s>"],   # Example stop token - not necessarily correct for this specific model! Please check before using.
  echo=True        # Whether to echo the prompt
)

# Chat Completion API

llm = Llama(model_path="./sauerkrautlm-mixtral-8x7b-instruct.Q4_K_M.gguf", chat_format="llama-2")  # Set chat_format according to the model you are using
llm.create_chat_completion(
    messages = [
        {"role": "system", "content": "You are a story writing assistant."},
        {
            "role": "user",
            "content": "Write a story about llamas."
        }
    ]
)

How to use with LangChain

Here are guides on using llama-cpp-python and ctransformers with LangChain:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: VAGO solutions's SauerkrautLM Mixtral 8X7B Instruct

SauerkrautLM

VAGO solutions SauerkrautLM-Mixtral-8x7B-Instruct

Introducing SauerkrautLM-Mixtral-8x7B-Instruct – our Sauerkraut version of the powerful Mixtral-8x7B-Instruct! Aligned with DPO

Table of Contents

  1. Overview of all SauerkrautLM-Mixtral models
  2. Model Details
  3. Evaluation
  4. Disclaimer
  5. Contact
  6. Collaborations
  7. Acknowledgement

All SauerkrautLM-Mixtral Models

Model HF GPTQ GGUF AWQ
SauerkrautLM-Mixtral-8x7B-Instruct Link coming soon coming soon coming soon
SauerkrautLM-Mixtral-8x7B Link coming soon coming soon coming soon

Model Details

SauerkrautLM-Mixtral-8x7B-Instruct

Training Dataset:

SauerkrautLM-Mixtral-8x7B-Instruct was trained with mix of German data augmentation and translated data. Aligned through DPO with our new German SauerkrautLM-DPO dataset based on parts of the SFT SauerkrautLM dataset as chosen answers and Sauerkraut-7b-HerO as rejected answers. Added with additional translated Parts of the HuggingFaceH4/ultrafeedback_binarized (Our dataset do not contain any TruthfulQA prompts - check Data Contamination Test Results) and argilla/distilabel-math-preference-dpo. We found, that only a simple translation of training data can lead to unnatural German phrasings. Data augmentation techniques were used to grant grammatical, syntactical correctness and a more natural German wording in our training data.

Data Contamination Test Results

Some models on the HuggingFace leaderboard had problems with wrong data getting mixed in. We checked our SauerkrautLM-DPO dataset with a special test [1] on a smaller model for this problem. The HuggingFace team used the same methods [2, 3].

Our results, with result < 0.1, %: being well below 0.9, indicate that our dataset is free from contamination.

The data contamination test results of HellaSwag and Winograde will be added once [1] supports them.

Dataset ARC MMLU TruthfulQA GSM8K
SauerkrautLM-DPO result < 0.1, %: 0.0 result < 0.1, %: 0.09 result < 0.1, %: 0.13 result < 0.1, %: 0.16

[1] https://github.com/swj0419/detect-pretrain-code-contamination

[2] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474#657f2245365456e362412a06

[3] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/265#657b6debf81f6b44b8966230

Prompt Template:

[INST] Instruction [/INST] Model answer [INST] Follow-up instruction [/INST]

Evaluation

Harness *evaluated with lm-evaluation-harness v0.3.0 - mmlu coming soon

*All benchmarks were performed with a sliding window of 4096. New Benchmarks with Sliding Window null coming soon

Disclaimer

We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models. These models may be employed for commercial purposes, and the Apache 2.0 remains applicable and is included with the model files.

Contact

If you are interested in customized LLMs for business applications, please get in contact with us via our website or contact us at Dr. Daryoush Vaziri. We are also grateful for your feedback and suggestions.

Collaborations

We are also keenly seeking support and investment for our startup, VAGO solutions, where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us.

Acknowledgement

Many thanks to argilla and Huggingface for providing such valuable datasets to the Open-Source community. And of course a big thanks to MistralAI for providing the open source community with their latest technology!