industry-mar11Top10 / README.md
Thang203's picture
Add BERTopic model
476ef25 verified
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

industry-mar11Top10

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("Thang203/industry-mar11Top10")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 10
  • Number of training documents: 516
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 models - language - data - large - language models 15 -1_models_language_data_large
0 models - model - language - training - language models 169 0_models_model_language_training
1 code - language - models - llms - programming 118 1_code_language_models_llms
2 ai - models - language - dialogue - human 49 2_ai_models_language_dialogue
3 detection - models - text - language - model 47 3_detection_models_text_language
4 multimodal - visual - image - models - generation 32 4_multimodal_visual_image_models
5 agents - language - policy - learning - tasks 24 5_agents_language_policy_learning
6 speech - asr - text - speaker - recognition 22 6_speech_asr_text_speaker
7 reasoning - cot - models - problems - commonsense 21 7_reasoning_cot_models_problems
8 retrieval - information - query - llms - models 19 8_retrieval_information_query_llms

Training hyperparameters

  • calculate_probabilities: False
  • language: english
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: 10
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.25.2
  • HDBSCAN: 0.8.33
  • UMAP: 0.5.5
  • Pandas: 1.5.3
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 2.6.1
  • Transformers: 4.38.2
  • Numba: 0.58.1
  • Plotly: 5.15.0
  • Python: 3.10.12