NLLB 600m Tibetan
State of the art
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
def translate(text, source_lang, target_lang, model_name="TenzinGayche/nllb_600M_bi_boen_3"):
# Define flores codes
flores_codes = {
"Standard Tibetan": "bod_Tibt",
"English": "eng_Latn"
}
# Convert language names to flores codes
source = flores_codes[source_lang]
target = flores_codes[target_lang]
# Load model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
# Check if a GPU is available and set device accordingly
device = 0 if torch.cuda.is_available() else -1
# Create translator pipeline
translator = pipeline('translation', model=model, tokenizer=tokenizer,
src_lang=source, tgt_lang=target, device=device)
# Perform translation
output = translator(text, max_length=400)
# Extract translated text
translated_text = output[0]['translation_text']
return translated_text
# Example usage
if __name__ == "__main__":
input_text = "Hello, how are you?"
source_language = "English"
target_language = "Standard Tibetan"
result = translate(input_text, source_language, target_language)
print(f"Original: {input_text}")
print(f"Translated: {result}")
- Downloads last month
- 40
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for TenzinGayche/nllb_600M_bi_boen_3
Base model
facebook/nllb-200-distilled-600M