metadata
language:
- en
license: apache-2.0
tags:
- not-for-all-audiences
datasets:
- Intel/orca_dpo_pairs
- athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW
- Open-Orca/SlimOrca
- MinervaAI/Aesir-Preview
- allenai/ultrafeedback_binarized_cleaned
model-index:
- name: NEBULA-23B-v1.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.72
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-23B-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.98
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-23B-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.4
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-23B-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.6
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-23B-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.95
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-23B-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-23B-v1.0
name: Open LLM Leaderboard
NEBULA-23.8B-v1.0
Technical notes
- 108 layers,DUS procedure, mistral(32)->SOLAR(48)->GALAXY(72)->NEBULA(108)
- 23.8B parameters
- model created as a extension of depth upscaling procedure used for SOLAR by upstage
Results
- model can and will produce NSFW content
- GSM8k evaluation seems to be often broken, HellaSwag, Winograde and TQA show that its a smart model
- RP and ERP work surprisingly good and I didn't encounter any GPTisms yet
- lower memory footprint than 20B and 23B models
- follows character card very well
- NSFW output feels fresh comparing to existing models
Finetuning for RP
- SFT using MinervaAI/Aesir-Preview dataset, 10 epochs
- DPO using athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW dataset, 1 epoch
- SFT using 1xAda6000, 10h
- DPO using 1x3090, 30h
- jupyter notebooks or mergekit configs for anyone wanting to reproduce/reuse scripts - just drop me a message
Prompt template
- Alpaca
- chat template is embedded in tokenizer config, should load automatically
Context size
- 4096
All comments are greatly appreciated, download, test and if you appreciate my work, consider buying me my fuel:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 59.94 |
AI2 Reasoning Challenge (25-Shot) | 66.72 |
HellaSwag (10-Shot) | 86.98 |
MMLU (5-Shot) | 65.40 |
TruthfulQA (0-shot) | 57.60 |
Winogrande (5-shot) | 82.95 |
GSM8k (5-shot) | 0.00 |