output

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2822
  • Wer: 0.2423
  • Cer: 0.0842

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

I have used dataset other than mozila common voice, thats why for fair evaluation, i do 80:20 split.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 48
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 192
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
No log 1.0 174 0.9860 3.1257 1.0
No log 2.0 348 0.9404 2.4914 0.9997
No log 3.0 522 0.1889 0.5970 0.5376
No log 4.0 696 0.1428 0.4462 0.4121
No log 5.0 870 0.1211 0.3775 0.3525
1.7 6.0 1044 0.1113 0.3594 0.3264
1.7 7.0 1218 0.1032 0.3354 0.3013
1.7 8.0 1392 0.1005 0.3171 0.2843
1.7 9.0 1566 0.0953 0.3115 0.2717
1.7 10.0 1740 0.0934 0.3058 0.2671
1.7 11.0 1914 0.0926 0.3060 0.2656
0.3585 12.0 2088 0.0899 0.3070 0.2566
0.3585 13.0 2262 0.0888 0.2979 0.2509
0.3585 14.0 2436 0.0868 0.3005 0.2473
0.3585 15.0 2610 0.2822 0.2423 0.0842

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Talha/URDU-ASR

Finetunes
2 models