Taehyun34/my_awesome_wnut_model
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1199
- Validation Loss: 0.2580
- Train Precision: 0.5808
- Train Recall: 0.4342
- Train F1: 0.4969
- Train Accuracy: 0.9466
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.3418 | 0.3154 | 0.3655 | 0.1041 | 0.1620 | 0.9285 | 0 |
0.1601 | 0.2601 | 0.5083 | 0.4043 | 0.4504 | 0.9433 | 1 |
0.1199 | 0.2580 | 0.5808 | 0.4342 | 0.4969 | 0.9466 | 2 |
Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Taehyun34/my_awesome_wnut_model
Base model
distilbert/distilbert-base-uncased