|
--- |
|
language: |
|
- zh |
|
- en |
|
tags: |
|
- glm |
|
- chatglm |
|
- thudm |
|
--- |
|
# ChatGLM3-6B-128K |
|
<p align="center"> |
|
💻 <a href="https://github.com/THUDM/ChatGLM" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2103.10360" target="_blank">[GLM@ACL 22]</a> <a href="https://github.com/THUDM/GLM" target="_blank">[GitHub]</a> • 📃 <a href="https://arxiv.org/abs/2210.02414" target="_blank">[GLM-130B@ICLR 23]</a> <a href="https://github.com/THUDM/GLM-130B" target="_blank">[GitHub]</a> <br> |
|
</p> |
|
|
|
<p align="center"> |
|
👋 Join our <a href="https://join.slack.com/t/chatglm/shared_invite/zt-25ti5uohv-A_hs~am_D3Q8XPZMpj7wwQ" target="_blank">Slack</a> and <a href="https://github.com/THUDM/ChatGLM/blob/main/resources/WECHAT.md" target="_blank">WeChat</a> |
|
</p> |
|
<p align="center"> |
|
📍Experience the larger-scale ChatGLM model at <a href="https://www.chatglm.cn">chatglm.cn</a> |
|
</p> |
|
|
|
## 介绍 (Introduction) |
|
|
|
ChatGLM3-6B-128K在[ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b)的基础上进一步强化了对于长文本的理解能力,能够更好的处理最多128K长度的上下文。具体地,我们对位置编码进行了更新,并设计了更有针对性的长文本训练方法,在对话阶段使用 128K 的上下文长度训练。在实际的使用中,如果您面临的上下文长度基本在 **8K 以内**,我们推荐使用[ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b);如果您需要处理**超过 8K** 的上下文长度,我们推荐使用ChatGLM3-6B-128K。 |
|
|
|
ChatGLM3-6B 是 ChatGLM 系列最新一代的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性: |
|
|
|
1. **更强大的基础模型:** ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,ChatGLM3-6B-Base 具有在 10B 以下的预训练模型中最强的性能。 |
|
2. **更完整的功能支持:** ChatGLM3-6B 采用了全新设计的 [Prompt 格式](https://github.com/THUDM/ChatGLM3/blob/main/README.md),除正常的多轮对话外。同时原生支持[工具调用](https://github.com/THUDM/ChatGLM3/blob/main/tools_using_demo/README.md)(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。 |
|
3. **更全面的开源序列:** 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM-6B-Base、长文本对话模型 ChatGLM3-6B-128K。以上所有权重对学术研究**完全开放**,在填写[问卷](https://open.bigmodel.cn/mla/form)进行登记后**亦允许免费商业使用**。 |
|
|
|
Based on [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b), ChatGLM3-6B-128K further strengthens the ability to understand long texts and can better handle contexts up to 128K in length. Specifically, we update the position encoding and design a more targeted long text training method, using a context length of 128K for training in the conversation stage. In actual use, if the context length you face is basically within **8K**, we recommend using [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b); if you need to handle **For context lengths exceeding 8K**, we recommend using ChatGLM3-6B-128K. |
|
|
|
ChatGLM3-6B is the latest open-source model in the ChatGLM series. While retaining many excellent features such as smooth dialogue and low deployment threshold from the previous two generations, ChatGLM3-6B introduces the following features: |
|
|
|
1. **More Powerful Base Model:** The base model of ChatGLM3-6B, ChatGLM3-6B-Base, employs a more diverse training dataset, more sufficient training steps, and a more reasonable training strategy. Evaluations on datasets such as semantics, mathematics, reasoning, code, knowledge, etc., show that ChatGLM3-6B-Base has the strongest performance among pre-trained models under 10B. |
|
2. **More Comprehensive Function Support:** ChatGLM3-6B adopts a newly designed [Prompt format](https://github.com/THUDM/ChatGLM3/blob/main/PROMPT_en.md), in addition to the normal multi-turn dialogue. It also natively supports [function call](https://github.com/THUDM/ChatGLM3/blob/main/tools_using_demo/README.md), code interpreter, and complex scenarios such as agent tasks. |
|
3. **More Comprehensive Open-source Series:** In addition to the dialogue model ChatGLM3-6B, the base model ChatGLM-6B-Base and the long-text dialogue model ChatGLM3-6B-128K are also open-sourced. All the weights are **fully open** for academic research, and after completing the [questionnaire](https://open.bigmodel.cn/mla/form) registration, they are also **allowed for free commercial use**. |
|
|
|
|
|
## 软件依赖 (Dependencies) |
|
|
|
```shell |
|
pip install protobuf transformers==4.30.2 cpm_kernels torch>=2.0 gradio mdtex2html sentencepiece accelerate |
|
``` |
|
|
|
## 代码调用 (Code Usage) |
|
|
|
可以通过如下代码调用 ChatGLM3-6B 模型来生成对话: |
|
|
|
```ipython |
|
>>> from transformers import AutoTokenizer, AutoModel |
|
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-128k", trust_remote_code=True) |
|
>>> model = AutoModel.from_pretrained("THUDM/chatglm3-6b-128k", trust_remote_code=True).half().cuda() |
|
>>> model = model.eval() |
|
>>> response, history = model.chat(tokenizer, "你好", history=[]) |
|
>>> print(response) |
|
你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。 |
|
>>> response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history) |
|
>>> print(response) |
|
晚上睡不着可能会让你感到焦虑或不舒服,但以下是一些可以帮助你入睡的方法: |
|
|
|
1. 制定规律的睡眠时间表:保持规律的睡眠时间表可以帮助你建立健康的睡眠习惯,使你更容易入睡。尽量在每天的相同时间上床,并在同一时间起床。 |
|
2. 创造一个舒适的睡眠环境:确保睡眠环境舒适,安静,黑暗且温度适宜。可以使用舒适的床上用品,并保持房间通风。 |
|
3. 放松身心:在睡前做些放松的活动,例如泡个热水澡,听些轻柔的音乐,阅读一些有趣的书籍等,有助于缓解紧张和焦虑,使你更容易入睡。 |
|
4. 避免饮用含有咖啡因的饮料:咖啡因是一种刺激性物质,会影响你的睡眠质量。尽量避免在睡前饮用含有咖啡因的饮料,例如咖啡,茶和可乐。 |
|
5. 避免在床上做与睡眠无关的事情:在床上做些与睡眠无关的事情,例如看电影,玩游戏或工作等,可能会干扰你的睡眠。 |
|
6. 尝试呼吸技巧:深呼吸是一种放松技巧,可以帮助你缓解紧张和焦虑,使你更容易入睡。试着慢慢吸气,保持几秒钟,然后缓慢呼气。 |
|
|
|
如果这些方法无法帮助你入睡,你可以考虑咨询医生或睡眠专家,寻求进一步的建议。 |
|
``` |
|
|
|
关于更多的使用说明,包括如何运行命令行和网页版本的 DEMO,以及使用模型量化以节省显存,请参考我们的 [Github Repo](https://github.com/THUDM/ChatGLM)。 |
|
|
|
For more instructions, including how to run CLI and web demos, and model quantization, please refer to our [Github Repo](https://github.com/THUDM/ChatGLM). |
|
|
|
|
|
## 协议 (License) |
|
|
|
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源,ChatGLM3-6B 模型的权重的使用则需要遵循 [Model License](MODEL_LICENSE)。 |
|
|
|
The code in this repository is open-sourced under the [Apache-2.0 license](LICENSE), while the use of the ChatGLM3-6B model weights needs to comply with the [Model License](MODEL_LICENSE). |
|
|
|
## 引用 (Citation) |
|
|
|
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。 |
|
|
|
If you find our work helpful, please consider citing the following papers. |
|
|
|
``` |
|
@article{zeng2022glm, |
|
title={Glm-130b: An open bilingual pre-trained model}, |
|
author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others}, |
|
journal={arXiv preprint arXiv:2210.02414}, |
|
year={2022} |
|
} |
|
``` |
|
``` |
|
@inproceedings{du2022glm, |
|
title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling}, |
|
author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie}, |
|
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, |
|
pages={320--335}, |
|
year={2022} |
|
} |
|
``` |
|
|