ZEUS-8B-V16 / README.md
T145's picture
Adding Evaluation Results (#1)
461b772 verified
metadata
base_model:
  - VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
  - arcee-ai/Llama-3.1-SuperNova-Lite
  - unsloth/Llama-3.1-Storm-8B
  - unsloth/Meta-Llama-3.1-8B-Instruct
library_name: transformers
tags:
  - mergekit
  - merge
model-index:
  - name: ZEUS-8B-V16
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: wis-k/instruction-following-eval
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 79.25
            name: averaged accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V16
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: SaylorTwift/bbh
          split: test
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 32.53
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V16
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: lighteval/MATH-Hard
          split: test
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 20.09
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V16
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 7.61
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V16
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 9.52
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V16
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 32.51
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V16
          name: Open LLM Leaderboard

Untitled Model (1)

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the DARE TIES merge method using unsloth/Meta-Llama-3.1-8B-Instruct as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

base_model: unsloth/Meta-Llama-3.1-8B-Instruct
dtype: bfloat16
merge_method: dare_ties
parameters:
  int8_mask: 1.0
  normalize: 1.0
  random_seed: 145.0
slices:
- sources:
  - layer_range: [0, 32]
    model: unsloth/Llama-3.1-Storm-8B
    parameters:
      density: 0.95
      weight: 0.33
  - layer_range: [0, 32]
    model: arcee-ai/Llama-3.1-SuperNova-Lite
    parameters:
      density: 0.9
      weight: 0.29
  - layer_range: [0, 32]
    model: VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct
    parameters:
      density: 0.92
      weight: 0.38
  - layer_range: [0, 32]
    model: unsloth/Meta-Llama-3.1-8B-Instruct
tokenizer_source: union

Open LLM Leaderboard Evaluation Results

Detailed results can be found here! Summarized results can be found here!

Metric Value (%)
Average 30.25
IFEval (0-Shot) 79.25
BBH (3-Shot) 32.53
MATH Lvl 5 (4-Shot) 20.09
GPQA (0-shot) 7.61
MuSR (0-shot) 9.52
MMLU-PRO (5-shot) 32.51