SzilviaB's picture
Update README.md
0e5f3ef verified
metadata
base_model: mergekit-community/mergekit-slerp-anaazls
library_name: transformers
tags:
  - mergekit
  - merge
  - llama-cpp
  - gguf-my-repo

image/png

Like MagnumSmaug ( https://huggingface.co/SzilviaB/Magnum_Smaug-Q4_K_M-GGUF )

But more practical and direct, not nearly as shy or prude.

Objects far less than MagnumSmaug, pretty much down for anything, and can be naughty.

SzilviaB/Smaug_Magnum_34b-Q3_K_S-GGUF

Slerp merge of abacusai/Smaug-34B-v0.1 (Base)

anthracite-org/magnum-v3-34b

SzilviaB/mergekit-slerp-anaazls-Q3_K_S-GGUF

This model was converted to GGUF format from mergekit-community/mergekit-slerp-anaazls using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo SzilviaB/mergekit-slerp-anaazls-Q3_K_S-GGUF --hf-file mergekit-slerp-anaazls-q3_k_s.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo SzilviaB/mergekit-slerp-anaazls-Q3_K_S-GGUF --hf-file mergekit-slerp-anaazls-q3_k_s.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo SzilviaB/mergekit-slerp-anaazls-Q3_K_S-GGUF --hf-file mergekit-slerp-anaazls-q3_k_s.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo SzilviaB/mergekit-slerp-anaazls-Q3_K_S-GGUF --hf-file mergekit-slerp-anaazls-q3_k_s.gguf -c 2048