Sultannn/bert-base-ft-ner-xtreme-id

This model is a fine-tuned version of bert-base-multilingual-uncased on an xtreme PAN-X.id for NER downstream task.

Details of the downstream task (NER) - Dataset

Dataset # Examples
Train 35 K
Validation 5 K

Metrics on evaluation set

Metrics Score
Accuracy 97.18
F1 93.26
Precision 92.36
Recall 94.18

Training hyperparameters

  • Optimizer = AdamW
  • LearningRate = 4e-5
  • WeightDecay = 1e-2
  • Warmup = 500

Example of usage

# pipeline example

from transformers import pipeline

model_checkpoint = "Sultannn/bert-base-ft-ner-xtreme-id"
token_classifier = pipeline(
    "token-classification", model=model_checkpoint, aggregation_strategy="simple")

text = "nama saya Tono saya bekerja di Facebook dan tinggal di Jawa"

token_classifier(text)

Framework versions

  • Transformers 4.18.0
  • TensorFlow 2.8.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1

Fine-tune on NER script provided by @Sultan

Made with in 🌏

Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Sultannn/bert-base-ft-ner-xtreme-id