What's this?

This is one of the models reported in the paper: "Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts"..

This paper proposes a procedure to synthetically generate a QA dataset, TeaBReaC, for pretraining language models for robust multi-step reasoning. Pretraining plain LMs like Bart, T5 and numerate LMs like NT5, PReasM, POET on TeaBReaC leads to improvemed downstream performance on several multi-step QA datasets. Please checkout out the paper for the details.

We release the following models:

  • A: Base Models finetuned on target datasets: {base_model}-{target_dataset}
  • B: Base models pretrained on TeaBReaC: teabreac-{base_model}
  • C: Base models pretrained on TeaBReaC and then finetuned on target datasets: teabreac-{base_model}-{target_dataset}

The base_model above can be from: bart-large, t5-large, t5-3b, nt5-small, preasm-large. The target_dataset above can be from: drop, tatqa, iirc-gold, iirc-retrieved, numglue.

The A models are only released for completeness / reproducibility. In your end application you probably just want to use either B or C.

How to use it?

Please checkout the details in our github repository, but in a nutshell:

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from digit_tokenization import enable_digit_tokenization # digit_tokenization.py from https://github.com/stonybrooknlp/teabreac

model_name = "StonyBrookNLP/teabreac-preasm-large-drop"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) # Fast doesn't work with digit tokenization
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
enable_digit_tokenization(tokenizer)
input_texts = [
    "Who scored the first touchdown of the game?\n" +
    "... Oakland would get the early lead in the first quarter as quarterback JaMarcus Russell completed a 20-yard touchdown pass to rookie wide receiver Chaz Schilens..."
    # Note: some models have slightly different qn/ctxt format. See the github repo.
]
input_ids = tokenizer(
    input_texts, return_tensors="pt",
    truncation=True, max_length=800,
    add_special_tokens=True, padding=True,
)["input_ids"]
generated_ids = model.generate(input_ids, min_length=1,  max_length=50)
generated_predictions = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
generated_predictions = [
    tokenizer.fix_decoded_text(generated_prediction) for generated_prediction in generated_predictions
]
# => ["Chaz Schilens"]
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.