|
--- |
|
license: cc-by-sa-4.0 |
|
base_model: |
|
- vikp/texify |
|
pipeline_tag: image-to-text |
|
--- |
|
|
|
## texify-quantized-onnx |
|
|
|
https://huggingface.co/vikp/texify with quantized ONNX weights, shoutout to https://huggingface.co/Xenova/texify |
|
|
|
## Usage (`optimum[onnxruntime]`) |
|
|
|
If you haven't already, you can install the optimum with the onnxrumtime backend |
|
|
|
```bash |
|
pip install "optimum[onnxruntime]" |
|
``` |
|
|
|
**Example:** |
|
|
|
```python |
|
from optimum.onnxruntime import ORTModelForVision2Seq |
|
from optimum.pipelines import pipeline |
|
|
|
model = ORTModelForVision2Seq.from_pretrained("Spedon/texify-quantized-onnx") |
|
texify = pipeline( |
|
"image-to-text", |
|
model, |
|
feature_extractor="Spedon/texify-quantized-onnx", |
|
image_processor="Spedon/texify-quantized-onnx", |
|
) |
|
image = ( |
|
"https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/latex.png" |
|
) |
|
latex = texify(image, max_new_tokens=384) |
|
print(latex) |
|
# [{'generated_text': "The potential $V_i$ of cell $\\mathcal{C}_i$ centred at position $\\mathbf{r}_i$ is related to the surface charge densities $\\sigma_j$ of cells $\\mathcal{C}_j$ $j\\in[1,N]$ through the superposition principle as: $$V_i\\,=\\,\\sum_{j=0}^{N}\\,\\frac{\\sigma_j}{4\\pi\\varepsilon_0}\\,\\int_{\\mathcal{C}_j}\\frac{1}{\\|\\mathbf{r}_i-\\mathbf{r}'\\|}\\,\\mathrm{d}^2\\mathbf{r}'\\,=\\,\\sum_{j=0}^{N}\\,Q_{ij}\\,\\sigma_j,$$ where the integral over the surface of cell $\\mathcal{C}_j$ only depends on $\\mathcal{C}_j$ shape and on the relative position of the target point $\\mathbf{r}_i$ with respect to $\\mathcal{C}_j$ location, as $\\sigma_j$ is assumed constant over the whole surface of cell $\\mathcal{C}_j$. "}] |
|
``` |
|
|
|
| Input image | Visualized output | |
|
| ---------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------- | |
|
| ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F61b253b7ac5ecaae3d1efe0c%2F9UNWPwjFM-dRVf6m1gYJV.png%3C%2Fspan%3E) | ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F61b253b7ac5ecaae3d1efe0c%2FBK4wkPTqqvlTYeTPeEXTh.png%3C%2Fspan%3E) | |
|
|
|
|