metadata
base_model: Salesforce/xLAM-7b-fc-r
datasets:
- Salesforce/xlam-function-calling-60k
language:
- en
license: cc-by-nc-4.0
pipeline_tag: text-generation
tags:
- function-calling
- LLM Agent
- tool-use
- deepseek
- pytorch
- llama-cpp
- gguf-my-repo
extra_gated_heading: Acknowledge to follow corresponding license to access the repository
extra_gated_button_content: Agree and access repository
extra_gated_fields:
First Name: text
Last Name: text
Country: country
Affiliation: text
Solshine/xLAM-7b-fc-r-Q2_K-GGUF
This model was converted to GGUF format from Salesforce/xLAM-7b-fc-r
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Solshine/xLAM-7b-fc-r-Q2_K-GGUF --hf-file xlam-7b-fc-r-q2_k.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Solshine/xLAM-7b-fc-r-Q2_K-GGUF --hf-file xlam-7b-fc-r-q2_k.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Solshine/xLAM-7b-fc-r-Q2_K-GGUF --hf-file xlam-7b-fc-r-q2_k.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Solshine/xLAM-7b-fc-r-Q2_K-GGUF --hf-file xlam-7b-fc-r-q2_k.gguf -c 2048