Sentence Transformers integration
#2
by
tomaarsen
HF staff
- opened
- 1_Pooling/config.json +10 -0
- README.md +33 -0
- config_sentence_transformers.json +11 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -2936,6 +2936,39 @@ Based on the [intfloat/e5-large-unsupervised](https://huggingface.co/intfloat/e5
|
|
2936 |
## Usage
|
2937 |
|
2938 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2939 |
### Using Huggingface transformers
|
2940 |
|
2941 |
|
|
|
2936 |
## Usage
|
2937 |
|
2938 |
|
2939 |
+
### Using Sentence Transformers
|
2940 |
+
|
2941 |
+
You can use the sentence-transformers package to use an snowflake-arctic-embed model, as shown below.
|
2942 |
+
|
2943 |
+
```python
|
2944 |
+
from sentence_transformers import SentenceTransformer
|
2945 |
+
|
2946 |
+
model = SentenceTransformer("Snowflake/snowflake-arctic-embed-m")
|
2947 |
+
|
2948 |
+
queries = ['what is snowflake?', 'Where can I get the best tacos?']
|
2949 |
+
documents = ['The Data Cloud!', 'Mexico City of Course!']
|
2950 |
+
|
2951 |
+
query_embeddings = model.encode(queries, prompt_name="query")
|
2952 |
+
document_embeddings = model.encode(documents)
|
2953 |
+
|
2954 |
+
scores = query_embeddings @ document_embeddings.T
|
2955 |
+
for query, query_scores in zip(queries, scores):
|
2956 |
+
doc_score_pairs = list(zip(documents, query_scores))
|
2957 |
+
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
|
2958 |
+
# Output passages & scores
|
2959 |
+
print("Query:", query)
|
2960 |
+
for document, score in doc_score_pairs:
|
2961 |
+
print(score, document)
|
2962 |
+
```
|
2963 |
+
```
|
2964 |
+
Query: what is snowflake?
|
2965 |
+
0.20051965 The Data Cloud!
|
2966 |
+
0.07660701 Mexico City of Course!
|
2967 |
+
Query: Where can I get the best tacos?
|
2968 |
+
0.24481852 Mexico City of Course!
|
2969 |
+
0.15664819 The Data Cloud!
|
2970 |
+
```
|
2971 |
+
|
2972 |
### Using Huggingface transformers
|
2973 |
|
2974 |
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.7.0.dev0",
|
4 |
+
"transformers": "4.39.3",
|
5 |
+
"pytorch": "2.1.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"query": "Represent this sentence for searching relevant passages: "
|
9 |
+
},
|
10 |
+
"default_prompt_name": null
|
11 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|