mistral-try-finetune

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 18
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 5
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.5606 0.57 50 0.8581
0.5656 1.14 100 0.5153
0.3651 1.71 150 0.4257
0.2995 2.29 200 0.3750
0.2008 2.86 250 0.3405
0.1693 3.43 300 0.3282
0.144 4.0 350 0.3156
0.1112 4.57 400 0.3209
0.0949 5.14 450 0.3346
0.0801 5.71 500 0.3212
0.0717 6.29 550 0.3288
0.0579 6.86 600 0.3255
0.0486 7.43 650 0.3359
0.0495 8.0 700 0.3273
0.0374 8.57 750 0.3617
0.0377 9.14 800 0.3725
0.0324 9.71 850 0.3697
0.0338 10.29 900 0.3946
0.0305 10.86 950 0.3605
0.0289 11.43 1000 0.3805

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Sneka/mistral-try-finetune

Finetuned
(142)
this model