Langboat_bloom-6b4-zh-instruct_finetune-chat
是基于Langboat_bloom-6b4-zh模型,在firefly-train-1.1M和Belle-train_2m_cn数据集上采用的QLoRA方法微调的对话模型。
在CEVAL上的评测结果:
STEM | Social Sciences | Humanities | Others | Average | AVG(Hard) |
---|---|---|---|---|---|
27.9 | 27.2 | 24.8 | 26.4 | 26.8 | 28.0 |
使用
单轮指令生成
from transformers import AutoTokenizer, AutoModelForCausalLM
device = "cuda"
model = AutoModelForCausalLM.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", device_map=device)
tokenizer = AutoTokenizer.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", use_fast=False)
source_prefix = "human"
target_prefix = "assistant"
query = "你好"
sentence = f"{source_prefix}: \n{query}\n\n{target_prefix}: \n"
print("query: ", sentence)
input_ids = tokenizer(sentence, return_tensors='pt').input_ids.to(device)
outputs = model.generate(input_ids=input_ids, max_new_tokens=500,
do_sample=True,
top_p=0.8,
temperature=0.35,
repetition_penalty=1.2,
eos_token_id=tokenizer.eos_token_id)
rets = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
response = rets.replace(sentence, "")
print(response)
多轮对话
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
device = "cuda"
model = AutoModelForCausalLM.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", device_map=device)
tokenizer = AutoTokenizer.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", use_fast=False)
source_prefix = "human"
target_prefix = "assistant"
history = ""
while True:
query = input("user: ").strip()
if not query:
continue
if query == 'q' or query == 'stop':
break
if history:
sentence = history + f"\n{source_prefix}: \n{query}\n\n{target_prefix}: \n"
else:
sentence = f"{source_prefix}: \n{query}\n\n{target_prefix}: \n"
input_ids = tokenizer(sentence, return_tensors='pt').input_ids.to(device)
outputs = model.generate(input_ids=input_ids, max_new_tokens=1024,
do_sample=True,
top_p=0.90,
temperature=0.1,
repetition_penalty=1.0,
eos_token_id=tokenizer.eos_token_id)
rets = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
print("bloom: {}".format(rets.replace(sentence, "")))
history = rets
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.