Langboat_bloom-6b4-zh-instruct_finetune-chat

是基于Langboat_bloom-6b4-zh模型,在firefly-train-1.1M和Belle-train_2m_cn数据集上采用的QLoRA方法微调的对话模型。
在CEVAL上的评测结果:

STEM Social Sciences Humanities Others Average AVG(Hard)
27.9 27.2 24.8 26.4 26.8 28.0

使用

单轮指令生成

from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda"
model = AutoModelForCausalLM.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", device_map=device)
tokenizer = AutoTokenizer.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", use_fast=False)

source_prefix = "human"
target_prefix = "assistant"
query = "你好"
sentence = f"{source_prefix}: \n{query}\n\n{target_prefix}: \n"
print("query: ", sentence)
input_ids = tokenizer(sentence, return_tensors='pt').input_ids.to(device)
outputs = model.generate(input_ids=input_ids, max_new_tokens=500,
                         do_sample=True,
                         top_p=0.8,
                         temperature=0.35,
                         repetition_penalty=1.2,
                         eos_token_id=tokenizer.eos_token_id)
rets = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
response = rets.replace(sentence, "")
print(response)

多轮对话

import os
from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda"
model = AutoModelForCausalLM.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", device_map=device)
tokenizer = AutoTokenizer.from_pretrained("SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat", use_fast=False)

source_prefix = "human"
target_prefix = "assistant"

history = ""

while True:
    query = input("user: ").strip()
    if not query:
        continue
    if query == 'q' or query == 'stop':
        break
    if history:
        sentence = history + f"\n{source_prefix}: \n{query}\n\n{target_prefix}: \n"
    else:
        sentence = f"{source_prefix}: \n{query}\n\n{target_prefix}: \n"
    input_ids = tokenizer(sentence, return_tensors='pt').input_ids.to(device)
    outputs = model.generate(input_ids=input_ids, max_new_tokens=1024,
                             do_sample=True,
                             top_p=0.90,
                             temperature=0.1,
                             repetition_penalty=1.0,
                             eos_token_id=tokenizer.eos_token_id)
    rets = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
    print("bloom: {}".format(rets.replace(sentence, "")))
    history = rets
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train SmilePanda/Langboat_bloom-6b4-zh-instruct_finetune-chat