Visualize in Weights & Biases

wav2vec2-kanji-base-unigram

This model is a fine-tuned version of rinna/japanese-wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6841
  • Cer: 0.4426
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 77380
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
5.0463 1.0 19348 7.1017 0.9448 0.999
2.3465 2.0 38696 4.1177 0.6757 1.0
1.6622 3.0 58044 4.1171 0.6136 1.0
1.478 4.0 77392 2.8624 0.5836 1.0
1.3639 5.0 96740 3.2231 0.5709 1.0
1.2924 6.0 116088 3.6346 0.5807 1.0
1.2191 7.0 135436 2.4840 0.5444 1.0
1.1705 8.0 154784 2.5931 0.5403 1.0
1.117 9.0 174132 2.4750 0.5263 1.0
1.0689 10.0 193480 2.1332 0.5131 1.0
1.0371 11.0 212828 2.0070 0.4903 1.0
0.9922 12.0 232176 2.0196 0.4847 1.0
0.948 13.0 251524 1.7148 0.4597 1.0
0.9143 14.0 270872 1.5651 0.4506 1.0
0.8841 15.0 290220 1.7433 0.4530 1.0
0.8593 16.0 309568 1.7191 0.4528 1.0
0.8388 17.0 328916 1.6598 0.4455 1.0
0.8304 18.0 348264 1.6671 0.4434 1.0
0.8219 19.0 367612 1.6866 0.4426 1.0
0.8184 20.0 386960 1.6841 0.4426 1.0

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
96.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for SiRoZaRuPa/wav2vec2-kanji-base-unigram-0914

Finetuned
(2)
this model