speaker-segmentation-fine-tuned-hindi

This model is a fine-tuned version of pyannote/speaker-diarization-3.1 on the Samyak29/synthetic-speaker-diarization-dataset-hindi-large dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4367
  • Model Preparation Time: 0.0045
  • Der: 0.1440
  • False Alarm: 0.0230
  • Missed Detection: 0.0280
  • Confusion: 0.0930

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
0.4598 1.0 194 0.4815 0.0045 0.1608 0.0231 0.0340 0.1036
0.3926 2.0 388 0.4519 0.0045 0.1545 0.0225 0.0312 0.1008
0.3602 3.0 582 0.4442 0.0045 0.1476 0.0232 0.0288 0.0956
0.3611 4.0 776 0.4388 0.0045 0.1443 0.0228 0.0281 0.0934
0.3399 5.0 970 0.4367 0.0045 0.1440 0.0230 0.0280 0.0930

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
16
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Shreyask09/speaker-segmentation-fine-tuned-callhome-jpn

Finetuned
(12)
this model

Dataset used to train Shreyask09/speaker-segmentation-fine-tuned-callhome-jpn