vit-snacks / README.md
Shivagowri's picture
Update README.md
7d4c06f
metadata
license: apache-2.0
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - snacks
metrics:
  - accuracy
model-index:
  - name: vit-snacks
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: Matthijs/snacks
          type: snacks
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9392670157068063

vit-snacks

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the Matthijs/snacks dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2754
  • Accuracy: 0.9393

Model description

upload any image of your fave yummy snack

Intended uses & limitations

there are only 20 different varieties of snacks

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8724 0.33 100 0.9118 0.8670
0.5628 0.66 200 0.6873 0.8471
0.4421 0.99 300 0.4995 0.8691
0.2837 1.32 400 0.4008 0.9026
0.1645 1.65 500 0.3702 0.9058
0.1604 1.98 600 0.3981 0.8921
0.0498 2.31 700 0.3185 0.9204
0.0406 2.64 800 0.3427 0.9141
0.1049 2.97 900 0.3444 0.9173
0.0272 3.3 1000 0.3168 0.9246
0.0186 3.63 1100 0.3142 0.9288
0.0203 3.96 1200 0.2931 0.9298
0.007 4.29 1300 0.2754 0.9393
0.0072 4.62 1400 0.2778 0.9403
0.0073 4.95 1500 0.2782 0.9393

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1