metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: DIALOGUE_one
results: []
DIALOGUE_one
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4205
- Precision: 0.7375
- Recall: 0.7368
- F1: 0.7345
- Accuracy: 0.7368
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.2687 | 0.62 | 30 | 1.0661 | 0.7208 | 0.6184 | 0.6068 | 0.6184 |
0.7981 | 1.25 | 60 | 0.6953 | 0.8047 | 0.7895 | 0.7941 | 0.7895 |
0.5436 | 1.88 | 90 | 0.5773 | 0.8362 | 0.7632 | 0.7502 | 0.7632 |
0.4194 | 2.5 | 120 | 0.5654 | 0.7821 | 0.7632 | 0.7620 | 0.7632 |
0.3344 | 3.12 | 150 | 0.6244 | 0.7686 | 0.7632 | 0.7634 | 0.7632 |
0.2455 | 3.75 | 180 | 0.5157 | 0.8687 | 0.8421 | 0.8422 | 0.8421 |
0.2549 | 4.38 | 210 | 0.6403 | 0.8533 | 0.8289 | 0.8298 | 0.8289 |
0.1941 | 5.0 | 240 | 0.8651 | 0.7571 | 0.75 | 0.7461 | 0.75 |
0.1621 | 5.62 | 270 | 0.7141 | 0.7793 | 0.7763 | 0.7765 | 0.7763 |
0.1514 | 6.25 | 300 | 0.5450 | 0.8961 | 0.8684 | 0.8698 | 0.8684 |
0.0772 | 6.88 | 330 | 0.8617 | 0.7966 | 0.7895 | 0.7923 | 0.7895 |
0.065 | 7.5 | 360 | 0.7816 | 0.7632 | 0.7632 | 0.7618 | 0.7632 |
0.0676 | 8.12 | 390 | 0.7294 | 0.7947 | 0.7895 | 0.7918 | 0.7895 |
0.048 | 8.75 | 420 | 0.8226 | 0.8417 | 0.8421 | 0.8400 | 0.8421 |
0.0377 | 9.38 | 450 | 1.1197 | 0.7021 | 0.7105 | 0.7030 | 0.7105 |
0.0175 | 10.0 | 480 | 1.1080 | 0.7892 | 0.7895 | 0.7811 | 0.7895 |
0.0169 | 10.62 | 510 | 1.1289 | 0.7337 | 0.7368 | 0.7331 | 0.7368 |
0.0028 | 11.25 | 540 | 1.1263 | 0.7243 | 0.7237 | 0.7184 | 0.7237 |
0.0023 | 11.88 | 570 | 1.2298 | 0.7103 | 0.7105 | 0.7042 | 0.7105 |
0.0019 | 12.5 | 600 | 1.2863 | 0.7103 | 0.7105 | 0.7042 | 0.7105 |
0.0017 | 13.12 | 630 | 1.2531 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0016 | 13.75 | 660 | 1.3108 | 0.7103 | 0.7105 | 0.7042 | 0.7105 |
0.0015 | 14.38 | 690 | 1.3185 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0014 | 15.0 | 720 | 1.3296 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0012 | 15.62 | 750 | 1.3296 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0012 | 16.25 | 780 | 1.3300 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0012 | 16.88 | 810 | 1.2730 | 0.7677 | 0.7632 | 0.7640 | 0.7632 |
0.0011 | 17.5 | 840 | 1.2823 | 0.7677 | 0.7632 | 0.7640 | 0.7632 |
0.0011 | 18.12 | 870 | 1.3328 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.001 | 18.75 | 900 | 1.3341 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.001 | 19.38 | 930 | 1.3587 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0009 | 20.0 | 960 | 1.3728 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0009 | 20.62 | 990 | 1.3904 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0008 | 21.25 | 1020 | 1.3928 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0008 | 21.88 | 1050 | 1.3913 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0008 | 22.5 | 1080 | 1.3853 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0008 | 23.12 | 1110 | 1.3900 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0008 | 23.75 | 1140 | 1.3935 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0007 | 24.38 | 1170 | 1.4068 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0008 | 25.0 | 1200 | 1.4144 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0008 | 25.62 | 1230 | 1.4106 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0008 | 26.25 | 1260 | 1.4165 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0007 | 26.88 | 1290 | 1.4207 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0007 | 27.5 | 1320 | 1.4236 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0007 | 28.12 | 1350 | 1.4281 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0007 | 28.75 | 1380 | 1.4204 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0007 | 29.38 | 1410 | 1.4213 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
0.0007 | 30.0 | 1440 | 1.4205 | 0.7375 | 0.7368 | 0.7345 | 0.7368 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0