File size: 5,853 Bytes
c30f396
 
 
 
 
3181d09
 
 
 
 
c30f396
 
 
 
 
 
 
 
 
 
 
3181d09
34a6886
3181d09
 
 
 
c30f396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad9815
c30f396
 
 
 
 
 
 
3181d09
 
 
 
34a6886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3181d09
 
c30f396
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: DIALOGUE_one
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DIALOGUE_one

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1947
- Precision: 0.9762
- Recall: 0.9737
- F1: 0.9736
- Accuracy: 0.9737

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.1919        | 0.62  | 30   | 0.8161          | 1.0       | 1.0    | 1.0    | 1.0      |
| 0.6182        | 1.25  | 60   | 0.2981          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.2564        | 1.88  | 90   | 0.1427          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0833        | 2.5   | 120  | 0.0918          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0436        | 3.12  | 150  | 0.1185          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0215        | 3.75  | 180  | 0.1243          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0109        | 4.38  | 210  | 0.1179          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0075        | 5.0   | 240  | 0.1240          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0062        | 5.62  | 270  | 0.1362          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0049        | 6.25  | 300  | 0.1385          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0042        | 6.88  | 330  | 0.1572          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0037        | 7.5   | 360  | 0.1569          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0031        | 8.12  | 390  | 0.1501          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0029        | 8.75  | 420  | 0.1563          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0024        | 9.38  | 450  | 0.1617          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0023        | 10.0  | 480  | 0.1625          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0021        | 10.62 | 510  | 0.1658          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.002         | 11.25 | 540  | 0.1699          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0017        | 11.88 | 570  | 0.1727          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0017        | 12.5  | 600  | 0.1731          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0015        | 13.12 | 630  | 0.1756          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0015        | 13.75 | 660  | 0.1764          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0014        | 14.38 | 690  | 0.1797          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0013        | 15.0  | 720  | 0.1817          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0012        | 15.62 | 750  | 0.1822          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0011        | 16.25 | 780  | 0.1833          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0011        | 16.88 | 810  | 0.1843          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.001         | 17.5  | 840  | 0.1857          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.001         | 18.12 | 870  | 0.1872          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0009        | 18.75 | 900  | 0.1884          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0009        | 19.38 | 930  | 0.1879          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0009        | 20.0  | 960  | 0.1882          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0008        | 20.62 | 990  | 0.1888          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0008        | 21.25 | 1020 | 0.1895          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0008        | 21.88 | 1050 | 0.1902          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0007        | 22.5  | 1080 | 0.1904          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0008        | 23.12 | 1110 | 0.1911          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0007        | 23.75 | 1140 | 0.1919          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0007        | 24.38 | 1170 | 0.1923          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0007        | 25.0  | 1200 | 0.1928          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0007        | 25.62 | 1230 | 0.1933          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0007        | 26.25 | 1260 | 0.1938          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0007        | 26.88 | 1290 | 0.1939          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0007        | 27.5  | 1320 | 0.1943          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0006        | 28.12 | 1350 | 0.1945          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0007        | 28.75 | 1380 | 0.1946          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0007        | 29.38 | 1410 | 0.1947          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |
| 0.0007        | 30.0  | 1440 | 0.1947          | 0.9762    | 0.9737 | 0.9736 | 0.9737   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0