lmv2-g-w9-293-doc-07-09

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0031
  • Address Precision: 1.0
  • Address Recall: 1.0
  • Address F1: 1.0
  • Address Number: 59
  • Business Name Precision: 0.9737
  • Business Name Recall: 0.9737
  • Business Name F1: 0.9737
  • Business Name Number: 38
  • City State Zip Code Precision: 1.0
  • City State Zip Code Recall: 1.0
  • City State Zip Code F1: 1.0
  • City State Zip Code Number: 59
  • Ein Precision: 0.9474
  • Ein Recall: 0.9
  • Ein F1: 0.9231
  • Ein Number: 20
  • List Account Number Precision: 1.0
  • List Account Number Recall: 1.0
  • List Account Number F1: 1.0
  • List Account Number Number: 59
  • Name Precision: 1.0
  • Name Recall: 1.0
  • Name F1: 1.0
  • Name Number: 59
  • Ssn Precision: 0.9268
  • Ssn Recall: 0.9744
  • Ssn F1: 0.9500
  • Ssn Number: 39
  • Overall Precision: 0.9850
  • Overall Recall: 0.9880
  • Overall F1: 0.9865
  • Overall Accuracy: 0.9995

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Address Precision Address Recall Address F1 Address Number Business Name Precision Business Name Recall Business Name F1 Business Name Number City State Zip Code Precision City State Zip Code Recall City State Zip Code F1 City State Zip Code Number Ein Precision Ein Recall Ein F1 Ein Number List Account Number Precision List Account Number Recall List Account Number F1 List Account Number Number Name Precision Name Recall Name F1 Name Number Ssn Precision Ssn Recall Ssn F1 Ssn Number Overall Precision Overall Recall Overall F1 Overall Accuracy
1.3523 1.0 234 0.7065 0.0 0.0 0.0 59 0.0 0.0 0.0 38 0.0 0.0 0.0 59 0.0 0.0 0.0 20 0.0 0.0 0.0 59 0.0 0.0 0.0 59 0.0 0.0 0.0 39 0.0 0.0 0.0 0.9513
0.3676 2.0 468 0.1605 0.9667 0.9831 0.9748 59 0.9091 0.7895 0.8451 38 1.0 1.0 1.0 59 0.0 0.0 0.0 20 0.6667 0.8475 0.7463 59 0.9077 1.0 0.9516 59 0.0 0.0 0.0 39 0.8767 0.7688 0.8192 0.9901
0.1217 3.0 702 0.0852 0.9667 0.9831 0.9748 59 0.9722 0.9211 0.9459 38 1.0 1.0 1.0 59 0.0 0.0 0.0 20 0.7246 0.8475 0.7812 59 0.9833 1.0 0.9916 59 0.5574 0.8718 0.6800 39 0.8551 0.8859 0.8702 0.9953
0.0783 4.0 936 0.0590 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.0 0.0 0.0 20 0.9355 0.9831 0.9587 59 1.0 1.0 1.0 59 0.5161 0.8205 0.6337 39 0.8968 0.9129 0.9048 0.9959
0.0548 5.0 1170 0.0432 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.0 0.0 0.0 20 0.9667 0.9831 0.9748 59 1.0 1.0 1.0 59 0.55 0.8462 0.6667 39 0.9104 0.9159 0.9132 0.9963
0.0405 6.0 1404 0.0333 1.0 1.0 1.0 59 0.925 0.9737 0.9487 38 1.0 1.0 1.0 59 0.0 0.0 0.0 20 0.9667 0.9831 0.9748 59 1.0 1.0 1.0 59 0.6066 0.9487 0.74 39 0.9142 0.9279 0.9210 0.9965
0.0328 7.0 1638 0.0278 0.9667 0.9831 0.9748 59 0.9737 0.9737 0.9737 38 0.9833 1.0 0.9916 59 0.0 0.0 0.0 20 1.0 1.0 1.0 59 1.0 1.0 1.0 59 0.5441 0.9487 0.6916 39 0.8983 0.9279 0.9129 0.9959
0.0245 8.0 1872 0.0212 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.1538 0.1 0.1212 20 0.9672 1.0 0.9833 59 1.0 1.0 1.0 59 0.5862 0.8718 0.7010 39 0.8905 0.9279 0.9088 0.9969
0.0192 9.0 2106 0.0164 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.56 0.7 0.6222 20 1.0 1.0 1.0 59 1.0 1.0 1.0 59 0.7111 0.8205 0.7619 39 0.9273 0.9580 0.9424 0.9983
0.0145 10.0 2340 0.0127 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.8235 0.7 0.7568 20 1.0 1.0 1.0 59 1.0 1.0 1.0 59 0.7391 0.8718 0.8000 39 0.9525 0.9640 0.9582 0.9989
0.0116 11.0 2574 0.0103 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.8571 0.9 0.8780 20 0.9672 1.0 0.9833 59 1.0 0.9661 0.9828 59 0.8537 0.8974 0.875 39 0.9643 0.9730 0.9686 0.9992
0.0099 12.0 2808 0.0095 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.9 0.9 0.9 20 1.0 1.0 1.0 59 1.0 1.0 1.0 59 0.8537 0.8974 0.875 39 0.9731 0.9790 0.9760 0.9992
0.0083 13.0 3042 0.0083 0.9667 0.9831 0.9748 59 0.9231 0.9474 0.9351 38 1.0 1.0 1.0 59 0.8095 0.85 0.8293 20 0.9667 0.9831 0.9748 59 0.9667 0.9831 0.9748 59 0.875 0.8974 0.8861 39 0.9469 0.9640 0.9554 0.9990
0.0096 14.0 3276 0.0066 1.0 1.0 1.0 59 0.9231 0.9474 0.9351 38 1.0 1.0 1.0 59 0.8571 0.9 0.8780 20 1.0 1.0 1.0 59 1.0 1.0 1.0 59 0.9024 0.9487 0.9250 39 0.9703 0.9820 0.9761 0.9993
0.0116 15.0 3510 0.0060 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.9048 0.95 0.9268 20 0.9667 0.9831 0.9748 59 1.0 1.0 1.0 59 0.8810 0.9487 0.9136 39 0.9704 0.9850 0.9776 0.9992
0.0064 16.0 3744 0.0045 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.8 0.8 0.8000 20 0.9833 1.0 0.9916 59 1.0 0.9831 0.9915 59 0.8837 0.9744 0.9268 39 0.9674 0.9790 0.9731 0.9995
0.0039 17.0 3978 0.0068 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 1.0 0.9 0.9474 20 0.9667 0.9831 0.9748 59 1.0 0.9661 0.9828 59 0.825 0.8462 0.8354 39 0.9698 0.9640 0.9669 0.9991
0.0036 18.0 4212 0.0098 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.5714 0.6 0.5854 20 0.9831 0.9831 0.9831 59 1.0 0.9831 0.9915 59 0.5424 0.8205 0.6531 39 0.8924 0.9459 0.9184 0.9981
0.0037 19.0 4446 0.0054 1.0 1.0 1.0 59 0.925 0.9737 0.9487 38 1.0 1.0 1.0 59 0.9048 0.95 0.9268 20 0.9672 1.0 0.9833 59 0.9821 0.9322 0.9565 59 0.9231 0.9231 0.9231 39 0.9672 0.9730 0.9701 0.9991
0.0033 20.0 4680 0.0043 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.8182 0.9 0.8571 20 0.9672 1.0 0.9833 59 1.0 0.9661 0.9828 59 0.8810 0.9487 0.9136 39 0.9645 0.9790 0.9717 0.9992
0.0022 21.0 4914 0.0031 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.8571 0.9 0.8780 20 0.9833 1.0 0.9916 59 1.0 0.9831 0.9915 59 0.9048 0.9744 0.9383 39 0.9733 0.9850 0.9791 0.9995
0.0026 22.0 5148 0.0039 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 1.0 0.85 0.9189 20 1.0 1.0 1.0 59 1.0 1.0 1.0 59 0.8444 0.9744 0.9048 39 0.9762 0.9850 0.9806 0.9994
0.0018 23.0 5382 0.0026 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.8947 0.85 0.8718 20 1.0 1.0 1.0 59 1.0 1.0 1.0 59 0.9268 0.9744 0.9500 39 0.9820 0.9850 0.9835 0.9996
0.002 24.0 5616 0.0032 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.8571 0.9 0.8780 20 1.0 1.0 1.0 59 1.0 1.0 1.0 59 0.8605 0.9487 0.9024 39 0.9704 0.9850 0.9776 0.9995
0.0026 25.0 5850 0.0033 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.9048 0.95 0.9268 20 0.9672 1.0 0.9833 59 1.0 0.9661 0.9828 59 0.9048 0.9744 0.9383 39 0.9733 0.9850 0.9791 0.9994
0.0015 26.0 6084 0.0025 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.95 0.95 0.9500 20 0.9667 0.9831 0.9748 59 1.0 0.9831 0.9915 59 0.95 0.9744 0.9620 39 0.9820 0.9850 0.9835 0.9996
0.0022 27.0 6318 0.0029 1.0 1.0 1.0 59 0.9024 0.9737 0.9367 38 1.0 1.0 1.0 59 0.8571 0.9 0.8780 20 1.0 1.0 1.0 59 1.0 1.0 1.0 59 0.9048 0.9744 0.9383 39 0.9676 0.9880 0.9777 0.9995
0.0012 28.0 6552 0.0031 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.9474 0.9 0.9231 20 1.0 1.0 1.0 59 1.0 1.0 1.0 59 0.9268 0.9744 0.9500 39 0.9850 0.9880 0.9865 0.9995
0.001 29.0 6786 0.0029 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.9444 0.85 0.8947 20 1.0 1.0 1.0 59 1.0 1.0 1.0 59 0.9048 0.9744 0.9383 39 0.9820 0.9850 0.9835 0.9995
0.0029 30.0 7020 0.0033 1.0 1.0 1.0 59 0.9737 0.9737 0.9737 38 1.0 1.0 1.0 59 0.95 0.95 0.9500 20 0.9667 0.9831 0.9748 59 1.0 1.0 1.0 59 0.95 0.9744 0.9620 39 0.9821 0.9880 0.9850 0.9995

Framework versions

  • Transformers 4.21.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.