Instruction-Tuned Mamba 2.8B on SlimOrca Dataset
Overview
This repository features the 2.8 billion parameter Mamba model, fine-tuned on a subset (20k) of the SlimOrca dataset. Big thanks to Justin Mattern from Haven for contributing essential code in the mamba-chat repository
Usage Instructions
To utilize the fine-tuned model, follow the Python code snippet below:
import torch
from transformers import AutoTokenizer
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("Schmadge/mamba-slim-orca")
tokenizer.eos_token = tokenizer.pad_token = "<|endoftext|>"
tokenizer.chat_template = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta").chat_template
model = MambaLMHeadModel.from_pretrained("Schmadge/mamba-slim-orca", device=device, dtype=torch.float16)
def generate_response(system_prompt, user_prompt):
# Preparing the prompt
prompt = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
input_ids = tokenizer.apply_chat_template(prompt, return_tensors="pt", add_generation_prompt=True).to(device)
# Generating the response
out = model.generate(input_ids=input_ids, max_length=2000, temperature=0.3, top_p=0.7, eos_token_id=tokenizer.eos_token_id)
decoded = tokenizer.batch_decode(out)
return decoded[0].split("<|assistant|>\n")[-1].replace('<|endoftext|>','')
system_prompt = "You are an AI assistant. Provide a detailed answer so user don't need to search outside to understand the answer."
user_prompt = "In a room I have only 3 sisters. Anna is reading a book. Alice is playing a match of chess.What the third sister, Amanda is doing ?"
response = generate_response(system_prompt, user_prompt)
print(response)
#Based on the information provided, we can infer that Amanda is playing a match of chess with Alice. Since Anna is reading a book, it is reasonable to assume that Amanda is playing a game of chess with Alice, as this is a common activity for siblings to engage in together.
Refrences:
Mamba Chat:
@misc{haven2023mambachat,
title = {Mamba-Chat},
author = {Justus Mattern and Konstantin Hohr},
year = {2023},
howpublished = {GitHub},
url = {https://github.com/havenhq/mamba-chat}
}
Mamba:
@article{mamba,
title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces},
author={Gu, Albert and Dao, Tri},
journal={arXiv preprint arXiv:2312.00752},
year={2023}
}
SlimOrca:
@misc{SlimOrca,
title = {SlimOrca: An Open Dataset of GPT-4 Augmented FLAN Reasoning Traces, with Verification},
author = {Wing Lian and others},
year = {2023},
publisher = {HuggingFace},
url = {https://huggingface.co/Open-Orca/SlimOrca}
}
- Downloads last month
- 12