|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- voxpopuli |
|
pipeline_tag: text-to-speech |
|
base_model: microsoft/speecht5_tts |
|
model-index: |
|
- name: speecht5_finetuned_facebook_voxpopuli_french |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# speecht5_finetuned_facebook_voxpopuli_french |
|
|
|
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4379 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 0.4872 | 1.0 | 1584 | 0.4663 | |
|
| 0.4656 | 2.0 | 3168 | 0.4642 | |
|
| 0.4686 | 3.0 | 4752 | 0.4533 | |
|
| 0.4576 | 4.0 | 6336 | 0.4479 | |
|
| 0.4658 | 5.0 | 7920 | 0.4485 | |
|
| 0.4536 | 6.0 | 9504 | 0.4443 | |
|
| 0.4559 | 7.0 | 11088 | 0.4426 | |
|
| 0.449 | 8.0 | 12672 | 0.4410 | |
|
| 0.4469 | 9.0 | 14256 | 0.4420 | |
|
| 0.4565 | 10.0 | 15840 | 0.4402 | |
|
| 0.4428 | 11.0 | 17424 | 0.4470 | |
|
| 0.4412 | 12.0 | 19008 | 0.4400 | |
|
| 0.4437 | 13.0 | 20592 | 0.4396 | |
|
| 0.4395 | 14.0 | 22176 | 0.4385 | |
|
| 0.4461 | 15.0 | 23760 | 0.4407 | |
|
| 0.4401 | 16.0 | 25344 | 0.4387 | |
|
| 0.4407 | 17.0 | 26928 | 0.4379 | |
|
| 0.4359 | 18.0 | 28512 | 0.4384 | |
|
| 0.4338 | 19.0 | 30096 | 0.4387 | |
|
| 0.4326 | 20.0 | 31680 | 0.4381 | |
|
| 0.4406 | 21.0 | 33264 | 0.4390 | |
|
| 0.437 | 22.0 | 34848 | 0.4387 | |
|
| 0.4357 | 23.0 | 36432 | 0.4389 | |
|
| 0.4309 | 24.0 | 38016 | 0.4387 | |
|
| 0.441 | 25.0 | 39600 | 0.4379 | |
|
| 0.4355 | 26.0 | 41184 | 0.4378 | |
|
| 0.4312 | 27.0 | 42768 | 0.4380 | |
|
| 0.4328 | 28.0 | 44352 | 0.4388 | |
|
| 0.4289 | 29.0 | 45936 | 0.4380 | |
|
| 0.4291 | 30.0 | 47520 | 0.4379 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.0.dev0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|