SaikatM commited on
Commit
f025ad6
·
verified ·
1 Parent(s): 2a9f0e0

Updated Info

Browse files
Files changed (1) hide show
  1. README.md +60 -153
README.md CHANGED
@@ -1,11 +1,21 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
 
9
 
10
 
11
 
@@ -13,187 +23,84 @@ tags: []
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
 
78
  ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
  #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
  [More Information Needed]
130
 
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
  #### Hardware
164
 
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - code
5
+ - gemma-2b
6
+ - finetune
7
+ - qlora
8
+ license: apache-2.0
9
+ datasets:
10
+ - SaikatM/Code-Platypus
11
+ language:
12
+ - en
13
  ---
14
 
15
  # Model Card for Model ID
16
 
17
  <!-- Provide a quick summary of what the model is/does. -->
18
+ This model is a fine-tuned version of google/gemma-2b on an SaikatM/Code-Platypus dataset.
19
 
20
 
21
 
 
23
 
24
  ### Model Description
25
 
26
+ - **Finetuned from model [optional]:** [google/gemma-2b]
 
 
 
 
 
 
 
 
 
 
27
 
28
  ### Model Sources [optional]
29
 
30
+ Training Code can be found here:
 
 
 
 
 
 
 
 
31
 
32
  ### Direct Use
33
 
34
+ * Code generation tasks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ### Training Data
37
+ Dataset: https://huggingface.co/datasets/SaikatM/Code-Platypus
38
+ Source Dataset: https://huggingface.co/datasets/garage-bAInd/Open-Platypus
 
 
39
 
40
  ### Training Procedure
41
 
42
+ Used QLoRA from PEFT and used SFTTrainer.
43
 
44
  #### Preprocessing [optional]
45
 
46
+ From the Open-Platypus dataset filtering-out rows which has leetcode_ne in it's data_source column.
47
 
48
 
49
  #### Training Hyperparameters
50
 
51
+ LoraConfig(
52
+ r=4, # rank 4
53
+ lora_alpha=2,
54
+ target_modules=modules,
55
+ lora_dropout=0.05,
56
+ bias="none",
57
+ task_type="CAUSAL_LM"
58
+ )
59
+
60
+ TrainingArguments(
61
+ output_dir="gemma-2b-code-platypus",
62
+ num_train_epochs=1,
63
+ per_device_train_batch_size=4,
64
+ gradient_accumulation_steps=4,
65
+ gradient_checkpointing=True,
66
+ optim="paged_adamw_8bit",
67
+ logging_steps=1,
68
+ save_strategy="epoch",
69
+ bf16=False,
70
+ tf32=False,
71
+ learning_rate=2e-4,
72
+ max_steps= 100,
73
+ max_grad_norm=0.3,
74
+ warmup_ratio=0.03,
75
+ lr_scheduler_type="constant",
76
+ push_to_hub=False,
77
+ report_to="tensorboard",
78
+ )
79
+
80
+ SFTTrainer(
81
+ model=model,
82
+ train_dataset=train_data,
83
+ eval_dataset=test_data,
84
+ dataset_text_field="text",
85
+ peft_config=lora_config,
86
+ max_seq_length=512,
87
+ tokenizer=tokenizer,
88
+ args=training_arguments,
89
+ )
90
 
91
  #### Speeds, Sizes, Times [optional]
92
 
93
+ Took around 1 hour to train.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
  ### Results
96
 
97
  [More Information Needed]
98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  ### Compute Infrastructure
100
 
101
+ Trained in Google Colab
102
 
103
  #### Hardware
104
 
105
+ T4 GPU Hardware accelerator.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106