Model Card for Model ID
This model is a fine-tuned version of google/gemma-2b on an SaikatM/Code-Platypus dataset.
Model Details
Model Description
- Finetuned from model: google/gemma-2b
Model Sources
Training code can be found here: https://github.com/Saikat-M/LLM-Finetuning
Direct Use
- Code generation tasks
Training Data
Dataset: https://huggingface.co/datasets/SaikatM/Code-Platypus
Source Dataset: https://huggingface.co/datasets/garage-bAInd/Open-Platypus
Training Procedure
Used QLoRA from PEFT and used SFTTrainer.
Preprocessing
From the Open-Platypus dataset filtering-out rows which has leetcode_ne in it's data_source column.
Training Hyperparameters
LoraConfig(
r=4,
lora_alpha=2,
target_modules=modules,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
TrainingArguments(
output_dir="gemma-2b-code-platypus",
num_train_epochs=1,
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
gradient_checkpointing=True,
optim="paged_adamw_8bit",
logging_steps=1,
save_strategy="epoch",
bf16=False,
tf32=False,
learning_rate=2e-4,
max_steps= 100,
max_grad_norm=0.3,
warmup_ratio=0.03,
lr_scheduler_type="constant",
push_to_hub=False,
report_to="tensorboard",
)
SFTTrainer(
model=model,
train_dataset=train_data,
eval_dataset=test_data,
dataset_text_field="text",
peft_config=lora_config,
max_seq_length=512,
tokenizer=tokenizer,
args=training_arguments,
)
Speeds, Sizes, Times
Took around 1 hour to train.
Results
- Test Result 1:
Write a fucntion to sort a list in python
Answer:
def sort_list(list):
return sorted(list)<eos>
Response: None
- Test Result 2:
Write a function to count Consonants in a Given Word in Python
Response: None
- Test Result 3:
Write a function to count the number of vowels in a given string in Python.
Example 1:
Input: s = "leetcodeisgreat"
Output: 5
Explanation: The vowels are 'e', 'i', 'a', 'o', and 'u'.
Example 2:
Input: s = "leetcodeisgreat"
Output: 0
Explanation: The vowels are 'e', 'i', 'a', 'o', and 'u'.
Constraints:
* 1 <= s.length <= 100
* s consists of lowercase English letters.
def countVowels(s):
count = 0
for c in s:
if c in 'aeiou':
count += 1
return count
<eos>
Response: None
Compute Infrastructure
Trained in Google Colab
Hardware
T4 GPU Hardware accelerator.
- Downloads last month
- 122
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.