Sagicc's picture
End of training
189a6e8
metadata
language:
  - sr
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Sr Fleurs- Sagicc
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Google Fleurs
          type: google/fleurs
          config: sr_rs
          split: test
          args: sr_rs
        metrics:
          - name: Wer
            type: wer
            value: 25.6021212344406

Whisper Small Sr Fleurs- Sagicc

This model is a fine-tuned version of openai/whisper-small on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4134
  • Wer Ortho: 28.9292
  • Wer: 25.6021

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0649 2.49 500 0.3685 30.6352 27.1489
0.0181 4.98 1000 0.4134 28.9292 25.6021

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3